Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2017; 24(04): 170-175
DOI: 10.1055/s-0043-115673
Raumfahrtmedizin
Georg Thieme Verlag KG Stuttgart · New York

Ultraschnelle zelluläre Anpassung an Schwerelosigkeit

Rapid cellular adaptation to microgravity
Cora Sandra Thiel
1   Anatomisches Institut, Medizinische Fakultät, Universität Zürich, Schweiz
2   Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Universität Magdeburg
3   Space Life Sciences Laboratory (SLSL), Kennedy Space Center, USA
,
Bertold Hock
4   Chair of Proteomics and Bioanalytics, TU München
,
Oliver Ullrich
1   Anatomisches Institut, Medizinische Fakultät, Universität Zürich, Schweiz
2   Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Universität Magdeburg
3   Space Life Sciences Laboratory (SLSL), Kennedy Space Center, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
25 August 2017 (online)

Zusammenfassung

Echtzeitmessungen auf der Internationalen Raumstation (ISS) konnten belegen, dass Zellen prinzipiell in der Lage sind, sich ultraschnell an veränderte Schwerkraftverhältnisse zu adaptieren. Im Experiment TRIPLE LUX A wurde der Einfluss von Gravitationskräften zwischen 1 und 0 g auf die Oxidative-Burst-Reaktion von NR8383-Alveolarmakrophagen untersucht. Erstmals konnte durch Echtzeit- und On-orbit-Messungen auf der ISS eine schwerkraftabhängige Reaktion in Säugerzellen direkt bewiesen und verfolgt werden. Durch den Messaufbau gelang ebenso der erstmalige Nachweis einer ultraschnellen und nach 42 Sekunden erfolgten vollständigen Anpassung einer zellulären Reaktion an die Schwerelosigkeit.

Abstract

Real-time on-orbit measurements at the International Space Station (ISS) could demonstrate that cells are in principle capable of ultimately adapting to microgravity conditions. In the experiment TRIPLE LUX A, the influence of gravitational forces between 1 and 0 g on the oxidative burst reaction of NR8383 alveolar macrophages was investigated. For the first time, a gravity-dependent reaction in mammalian cells could be directly demonstrated and followed by real-time and on-orbit measurements at the ISS. As a result of the measurement setup, the detection of a fast and complete adaptation of a cellular response to microgravity was achieved.

 
  • Literatur

  • 1 Thiel CS, Lauber B, Polzer J, UIlrich O. Time course of cellular and molecular regulation in the immune system in altered gravity: Progressive damage or adaptation?. REACH-Reviews in Human Space Exploration 2017; 5: 22-32
  • 2 Guéguinou N, Huin-Schohn C, Bascove M. et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit?. J Leukoc Biol 2009; 86: 1027-1038
  • 3 Mehta SK, Crucian BE, Stowe RP. et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 2013; 61: 205-209
  • 4 Crucian B, Stowe RP, Mehta S. et al. Alterations in adaptive immunity persist during long-duration spaceflight. npj Microgravity 2015; 1: 15013
  • 5 Crucian B, Babiak-Vazquez A, Johnston S. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med 2016; 9: 383-391
  • 6 Clément G. Fundamentals of Space Medicine. 2nd ed.. New York: Springer; 2011: 273-279
  • 7 Tauber S, Lauber B, Paulsen K. et al. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 2017; 12: e0175599
  • 8 The National Academies of Science. Engineering and Medicine. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era. Washington DC: The National Academies Press; 2011
  • 9 Thiel CS, de Zélicourt D, Tauber S. et al. Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 2017; 7: 43
  • 10 Adrian A, Schoppmann K, Sromicki J. et al. The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 2013; 11: 98
  • 11 Vorselen D, Roos WH, MacKintosh FC. et al. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 2014; 28: 536-547
  • 12 el Benna J, Ruedi JM, Babior BM. Cytosolic guanine nucleotide-binding protein Rac2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxidase components p47phox and p67phox to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem 1994; 269: 6729-6734
  • 13 Nauseef WM, Volpp BD, McCormick S. et al. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 1991; 266: 591117