Planta Med 2018; 84(03): 182-190
DOI: 10.1055/s-0043-118807
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora

Ahmed F. Tawfike
1   Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, United Kingdom
2   Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Egypt
,
Grainne Abbott
1   Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, United Kingdom
,
Louise Young
1   Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, United Kingdom
,
RuAngelie Edrada-Ebel
1   Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, United Kingdom
› Author Affiliations
Further Information

Publication History

received 10 May 2017
revised 11 August 2017

accepted 21 August 2017

Publication Date:
28 August 2017 (online)

Abstract

Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora. Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF-κB and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using high-resolution electrospray ionization mass spectrometry directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N-acetylphenylalanine (1) and two linear peptide congeners of 1: dipeptide N-acetylphenylalanyl-L-phenylalanine (2) and tripeptide N-acetylphenylalanyl-L-phenylalanyl-L-leucine (3).

Supporting Information

 
  • References

  • 1 Mbwambo ZH, Erasto P, Nondo RO, Innocent E, Kidukuli AW. Antibacterial and cytotoxic activities of Terminalia stenostachya and Terminalia spinosa . Tanzan J Health Res 2011; 13: 119-124
  • 2 Kim JH, Koo YC, Hong CO, Yang SY, Jun W, Lee KW. Mutagenicity and oral toxicity studies of Terminalia chebula . Phytother Res 2012; 26: 39-47
  • 3 Ravi Shankara BE, Ramachandra YL, Rajan SS, Ganapathy PS, Yarla NS, Richard SA, Dhananjaya BL. Evaluating the anticancer potential of ethanolic gall extract of Terminalia chebula (Gaertn.) retz. (Combretaceae). Pharmacognosy Res 2016; 8: 209-212
  • 4 Lin CC, Hsu YF, Lin TC. Antioxidant and free radical scavenging effects of the tannins of Terminalia catappa l. Anticancer Res 2001; 21: 237-243
  • 5 Tan AC, Konczak I, Ramzan I, Zabaras D, Sze DM. Potential antioxidant, antiinflammatory, and proapoptotic anticancer activities of kakadu plum and illawarra plum polyphenolic fractions. Nutr Cancer 2011; 63: 1074-1084
  • 6 Basu T, Panja S, Ghate NB, Chaudhuri D, Mandal N. Antioxidant and antiproliferative effects of different solvent fractions from Terminalia belerica roxb. Fruit on various cancer cells. Cytotechnology 2017; 69: 201-216
  • 7 Kuo PL, Hsu YL, Lin TC, Chang JK, Lin CC. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer a549 cells by casuarinin from the bark of Terminalia arjuna linn. Anticancer Drugs 2005; 16: 409-415
  • 8 Ghate NB, Hazra B, Sarkar R, Chaudhuri D, Mandal N. Alteration of bax/bcl-2 ratio contributes to Terminalia belerica-induced apoptosis in human lung and breast carcinoma. In Vitro Cell Dev Biol Anim 2014; 50: 527-537
  • 9 Messeha SS, Zarmouh NO, Taka E, Gendy SG, Shokry GR, Kolta MG, Soliman KF. The role of monocarboxylate transporters and their chaperone cd147 in lactate efflux inhibition and the anticancer effects of Terminalia chebula in neuroblastoma cell line n2-a. Eur J Med Plants 2016; 12: EJMP.23992
  • 10 Achari C, Reddy GV, Reddy TC, Reddanna P. Chebulagic acid synergizes the cytotoxicity of doxorubicin in human hepatocellular carcinoma through cox-2 dependent modulation of mdr-1. Med Chem 2011; 7: 432-442
  • 11 Yeh CB, Hsieh MJ, Hsieh YS, Chien MH, Lin PY, Chiou HL, Yang SF. Terminalia catappa exerts antimetastatic effects on hepatocellular carcinoma through transcriptional inhibition of matrix metalloproteinase-9 by modulating NF-kappab and ap-1 activity. Evid Based Complement Alternat Med 2012; 2012: 595292
  • 12 Saleem A, Husheem M, Harkonen P, Pihlaja K. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. Fruit. J Ethnopharmacol 2002; 81: 327-336
  • 13 Gangadevi V, Muthumary J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 2009; 52: 9-15
  • 14 Gangadevi V, Muthumary J. A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna . Appl Biochem Biotechnol 2009; 158: 675-684
  • 15 Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003; 66: 1022
  • 16 Arnold EA. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Rev 2007; 21: 51-66
  • 17 Tawfike A, Tate R, Abbott G, Young L, Viegelmann C, Schumacher M, Diederich M, Edrada-Ebel R. Metabolomic tools to assess the chemistry and bioactivity of endophytic aspergillus strain. Chem Biodivers 2017; DOI: 10.1002/cbdv.201700040.
  • 18 Facts and statistics. Leukemia & Lymphoma Society Website. Available at. http://www.lls.org/http%253A/llsorg.prod.acquia-sites.com/facts-and-statistics/facts-and-statistics-overview/facts-and-statistics Accessed June 8, 2017
  • 19 Leukaemia (all subtypes combined) statistics. Cancer Research UK Website. Available at. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia%23heading-One Accessed June 8, 2017
  • 20 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67: 7-30
  • 21 Dai J, Krohn K, Floerke U, Pescitelli G, Kerti G, Papp T, Koever KE, Benyei AC, Draeger S, Schulz B, Kurtan T. Curvularin-type metabolites from the fungus Curvularia sp. isolated from a marine alga. Eur J Org Chem 2010; 2010: 6928-6937
  • 22 Greve H, Schupp PJ, Eguereva E, Kehraus S, Kelter G, Maier A, Fiebig HH, Konig GM. Apralactone a and a new stereochemical class of curvularins from the marine fungus Curvularia sp. Eur J Org Chem 2008; 2008: 5085-5092
  • 23 Mondol MA, Farthouse J, Islam MT, Schuffler A, Laatsch H. Metabolites from the endophytic fungus Curvularia sp. M12 act as motility inhibitors against Phytophthora capsici zoospores . J Nat Prod 2017; 80: 347-355
  • 24 MacIntyre L, Zhang T, Viegelmann C, Juarez Martinez I, Cheng C, Dowdells C, Abdelmohsen UR, Gernert C, Hentschel U, Edrada-Ebel R. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs 2014; 12: 3416-3448
  • 25 Tawfike AF, Viegelmann C, Edrada-Ebel R. Metabolomics and Dereplication Strategies in natural Products. In: Roessner U, Dias DA. eds. Metabolomics Tools for natural Product Discovery. New York: Humana Press; 2013: 227-244
  • 26 Kamal N, Viegelmann CV, Clements CJ, Edrada-Ebel R. Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae . Planta Med 2017; 83: 565-573
  • 27 Gilmore TD. Introduction to NF-kappab: players, pathways, perspectives. Oncogene 2006; 25: 6680-6684
  • 28 Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A. The transcription factor nuclear factor-kappa b and cancer. Clin Oncol (R Coll Radiol) 2007; 19: 154-161
  • 29 Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M. Canonical pathway of nuclear factor κb activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A 2004; 101: 5634-5639
  • 30 Hyde KD, Soytong K. The fungal endophyte dilemma. Fungal Divers 2008; 33: 163-173
  • 31 Jones MP, Keane J, Nolan TJ. Lichen substances containing nitrogen. Nature 1944; 154: 580
  • 32 Bond R, Boeyens J, Holzapfel C, Steyn P. Cyclopiamines A and B, novel oxindole metabolites of Penicillium cyclopium Westling. J Chem Soc, Perkin Trans 1979; 1: 1751-1761
  • 33 Dressen MHCL, van de Kruijs BHP, Meuldijk J, Vekemans JAJM, Hulshof LA. From batch to flow processing: racemization of n-acetylamino acids under microwave heating. Org Process Res Dev 2009; 13: 888-895
  • 34 Naturale G, Lamblin M, Commandeur C, Felpin FX, Dessolin J. Direct c–h alkylation of naphthoquinones with amino acids through a revisited Kochi-Anderson radical decarboxylation: trends in reactivity and applications. Eur J Org Chem 2012; 2012: 5774-5788
  • 35 Koshti N, Naik S, Parab B. Polymer-bound cationic rh(i) phosphine catalyst for homogeneous asymmetric hydrogenation. Indian J Chem, Sect B: Org Chem 2005; 44 B: 2555-2559
  • 36 Andrew W. Afalanine. Pharmaceutical Manufacturing Encyclopedia. 3rd ed.. ed. Norwich: William Andrew Publishing; 2007
  • 37 Stout KL, Hallock KJ, Kampf JW, Ramamoorthy A. N-acetyl-l-phenylalanine. Acta Crystallogr C 2000; 56: E100
  • 38 Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin W, Wray V, Edrada-Ebel R, Proksch P. Callyaerins a–f and h, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa . Bioorg Med Chem 2010; 18: 4947-4956
  • 39 Li GN, Li J, Liang ZP. (s)-2-[(s)-2-acetamido-3-phenylpropanamido]-3-phenylpropanoic acid. Acta Crystallogr E 2007; 63: o372-o373
  • 40 Argoudelis AD, Mizsak SA, Baczynskyj L. N-acetyl-l-phenylalanyl-l-phenylalaninol a metabolite of Emericellopsis salmosynnemata . J Antibiot (Tokyo) 1975; 28: 733-736
  • 41 Argoudelis AD, Dietz A, Johnson LE. Zervamicins i and ii, polypeptide antibiotics produced by Emericellopsis salmosynnemata . J Antibiot (Tokyo) 1974; 27: 321-328
  • 42 Ovchinnikova TV, Levitskaya NG, Voskresenskaya OG, Yakimenko ZA, Tagaev AA, Ovchinnikova AY, Murashev AN, Kamenskii AA. Neuroleptic properties of the ion-channel-forming peptaibol zervamicin: locomotor activity and behavioral effects. Chem Biodivers 2007; 4: 1374-1387
  • 43 Morihara K, Oka T. Α-chymotrypsin as the catalyst for peptide synthesis. Biochem J 1977; 163: 531-542
  • 44 Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL. Mallick P · A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 2012; 30: 9918-9920