Horm Metab Res 2018; 50(02): 152-159
DOI: 10.1055/s-0043-120669
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

High Salt Intake Promotes Different Responses to Urodilatin and Uroguanylin in the Isolated Rat Kidney

Antonio Rafael Coelho Jorge
1   Superior Institute of Biomedical Sciences, Laboratory of Renal Physiology, Ceara State University, Fortaleza-CE, Brazil
,
Pedro Henrique Sá Costa
2   Institute of Biomedicine, Federal University of Ceara, Fortaleza-CE, Brazil
,
Helena Serra Azul Monteiro
2   Institute of Biomedicine, Federal University of Ceara, Fortaleza-CE, Brazil
,
Manassés Claudino Fonteles
1   Superior Institute of Biomedical Sciences, Laboratory of Renal Physiology, Ceara State University, Fortaleza-CE, Brazil
3   Universidade Presbiteriana Mackenzie, School of Pharmacy, Sao Paulo, Brazil
› Author Affiliations
Further Information

Publication History

received 28 August 2017

accepted 25 September 2017

Publication Date:
12 December 2017 (online)

Abstract

Urodilatin (UD) and uroguanylin (UGN) have been implicated in the regulation of salt and water homeostasis, particularly in the balance handling of salt intake. In this sense, the aim of the present work was to study the main effects of these peptides in kidneys from animals subjected to high NaCl (2%) intake, during 10 days in metabolic cages. The control group received only normal water, whereas the treated group drank 2% solution of NaCl (NaCl 2%). In addition, we studied effect of subthreshold UD (0.14 nM) and UGN (0.06 μM) doses in NaCl 2% after a 30-min control period. Kidney perfusion was performed with Krebs–Henseleit containing 6 g% bovine albumin previously dialyzed. The effects of UD (0.14 nM) promoted reduction of PP, RVR, and UF in the NaCl 2% group. We also observed an increase in %TNa+ and %TCl. The main effects of UGN in NaCl 2% were increase in PP, UF, and GFR, followed by a reduction in %TNa+ and %TCl. After an increased intake of salt, physiological pathways are activated and regulated in order to eliminate excess sodium. In this study, we observed that in a subthreshold dose, UD does not promotes natriuresis and diuresis, suggesting that UGN is an important hormone in inducing salt excretion in a chronic salt overload. Therefore, the effects herein described may play a contributory role in the regulation of kidney function after ingestion of salty meals.

 
  • References

  • 1 Lima AAM, Monteiro HSA, Fonteles MC. The effects of Escherichia coli heat-stable enterotoxin in renal sodium tubular transport. Basic Clin Physiol Pharmacol 1992; 70: 163-167
  • 2 Lima AAM, Fonteles MC. From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones. Braz J Med Biol Res 2014; 47: 179-191
  • 3 Forte LR, Krause WJ, Freeman RH. Escherichia coli enterotoxin receptors: localization in opossum kidney, intestine and testis. Am J Physiol 1989; 257 5 Pt 2 F874-F881
  • 4 Forte Jr. LR. Uroguanylin: physiological role as a natriuretic hormone. J Am Soc Nephrol 2005; 16: 291-292
  • 5 Fonteles MC, Monteiro HSA, Soares AM, Santos-Neto MS, Greenberg RN, Lima AAM. The lysine-1 analog of guanylin induces intestinal secretion and natriuresis in the isolated perfused kidney. Braz J Med Biol Res 1996; 29: 267-271
  • 6 Fonteles MC, Greenberg RN, Monteiro HSA, Currie MG, Forte LR. Natriuretic and kaliuretic activities of guanylin and uroguanylin in the isolated perfused rat kidney. Am J Physiol 1998; 275: F191-F197
  • 7 Fonteles MC, Nascimento NRF. Guanylin peptide family: history, interactions with ANP, and new pharmacological perspectives. Can J Physiol Pharmacol 2011; 89: 575-585
  • 8 Forssmann WG, Meyer M, Forssmann K. The renal urodilatin system: clinical implications. Cardiovasc Res 2001; 51: 450-462
  • 9 Hirsch JR, Meyer M, Forssmann WG. ANP and Urodilatin: Who is who in the kidney. Eur J Med Res 2006; 11: 447-454
  • 10 Kuhn M. Molecular physiology of natriuretic peptide signaling. Basic Res Cardiol 2004; 99: 76-82
  • 11 Hildebrand DA, Mizelle HL, Brands MW, Hall JE. Comparison of renal actions of urodilatin and atrial natriuretic peptide. Am J Physiol 1992; 395-399
  • 12 Vives D, Farage S, Motta R, Lopes AG, Caruso-Neves C. Atrial natriuretic peptides and urodilatin modulate proximal tubule Na+-ATPase activity through activation of the NPR-A/cGMP/PKG pathway. Peptides 2010; 31: 903-908
  • 13 Santos-Neto MS, Carvalho AF, Monteiro HS, Forte LR, Fonteles MC. Interaction of atrial natriuretic peptide, urodilatin, guanylin and uroguanylin in the isolated perfused rat kidney. Regul Pept 2006; 136: 14-22
  • 14 Forte LRF, Fonteles MC. Uroguanyin and Guanylin: Endocrine link connecting the intestine and kidney for regulation of sodium balance. In: Brenner and Rector’s. The kidney. Elsevier; 2012: 519-535
  • 15 Fonteles MC, Havt A, Prata RB, Prata PHB, Monteiro HSA, Lima AAM, Jorge ARC, Santos CF, Greenberg RN, Nascimento NRF. High-salt intake primes the rat kidney to respond to a subthreshold uroguanylin dose during ex vivo renal perfusion. Regul Pept 2009; 158: 6-13
  • 16 Fonteles MC, Cohen JJ, Black AJ, Wertheim SJ. Support of kidney function by long-chain fatty acids derived from renal tissue. Am J Physiol 1983; 244: F235-F246
  • 17 Bowman RH, Maack T. Glucose transport by the isolated perfused rat kidney. Am J Physiol 1972; 222: 1499-1504
  • 18 Wasler M, Davidson DG, Orloff J. The renal clearance of alkali-stable inulin. J Clin Invest 1955; 34: 1520-1523
  • 19 Martinez-Maldonado M, Opava-Stitzer S. Free water clearance curves during saline, manitol, glucose and urea diuresis in rats. J Physiol (Lond) 1978; 280: 487-497
  • 20 Kuhn M. Molecular physiology of natriuretic peptide signaling. Basic Res Cardiol 2004; 99: 76-82
  • 21 Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 2000; 52: 375-414
  • 22 Sindice A, Schlatter E. Cellular effects of guanylin and uroguanylin. J Am Soc Nephrol 2006; 17: 607-616
  • 23 Schulz S, Green CK, Yuen PS, Garbers DL. Guanylyl cyclase is a heatstable enterotoxin receptor. Cell 1990; 63: 941-948
  • 24 Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, Duffin KL, Siegel NR, Currie MG. Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cylcase. Proc Natl Acad Sci USA 1993; 90: 10464-10468
  • 25 Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes preglomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 1986; 324: 473-476
  • 26 Kirchoff K, Bub A, Marxen P, Frossman WG. Urodilatin inhibits sodium reabsorption in the isolated perfused rat kidney. Exp Nephrol 1994; 6: 231-237
  • 27 Drummer C, Fiedler F, Koning A, Gerzer R. Urodilatin, a kidney-derived natriuretic factor, is excreted with a circadian rhythm and is stimulated by saline infusion in man. J Am Soc Nephrol 1991; 1: 1109-1113
  • 28 Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J 2015; 36: 715-723
  • 29 Nagase M, Ando K, Katafuchi T, Kato A, Hirose S, Fujita T. Role of natriuretic peptide receptor type c in dahl salt-sensitive hypertensive rats. Hypertension 1997; 30: 177-183
  • 30 Bestle MH, Olsen NV, Christensen P, Jensen BV, Bie P. Cardiovascular, endocrine, and renal effects of urodilatin in normal humans. Am J Physiol Regul Integr Comp Physiol 1999; 276: R684-R695
  • 31 Fluge T, Forssmann WG, Kunkel G. Bronchodilation using combined urodilatin-albuterol administration in asthma: a randomized, double-blind, placebo-controlled trial. Eur J Med Res 1999; 4: 411-415
  • 32 Carrithers SL, Ott CE, Hill MJ, Johnson BR, Cai W, Chang JJ, Shah RG, Sun C, Mann EA, Fonteles MC, Forte LR, Jackson BA, Giannella RA, Greenberg RN. Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor. Kidney Int 2004; 65: 40-53
  • 33 Sindić A, Velic A, Başoglu C, Hirsch JR, Edemir B, Kuhn M, Schlatter E. Uroguanylin and guanylin regulate transport of mouse cortical collecting duct independent of guanylate cyclase C. Kidney Int 2005; 68: 1008-1017
  • 34 Lessa LMA, Amorim JBO, Fonteles MC, Malnic G. Effects of renoguanylin on hydrogen enterotoxin in renal sodium tubular transport. Pharmacol Toxicol 2009; 70: 163-167
  • 35 Da Silva Lima V, Crajoinas RO, Carraro-Lacroix LR, Godinho AN, Dias JLG, Dariolli R, Girardi ACC, Fonteles MC, Malnic G, Lessa LMA. Uroguanylin inhibits H-ATPase activity and surface expression in renal distal tubules by a PKG-dependent pathway. Am J Physiol Cell Physiol 2014; 307: C532-C541
  • 36 Amorim JB, Musa-Aziz R, Lessa LM, Malnic G, Fonteles MC. Effect of uroguanylin on potassium and bicarbonate transport in rat renal tubules. Can J Physiol Pharmacol 2006; 84: 1003-1010
  • 37 Sindić A, Schlatter E. Mechanisms of action of uroguanylin and guanylin and their role in salt handling. Nephrol Dial Transplant 2006; 21: 3007-3012
  • 38 Gauquelin G, Garcia R, Carrier F, Cantin M, Gutkowska J, Thibault G, Schiffrin EI. Glomerular ANF receptor regulation during changes in sodium and water metabolism. Am J Physiol 1998; 254: F51-F55
  • 39 Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL, Zelikovic I. Pendrin, a novel transcriptional target of the uroguanylin system. Cell Physiol Biochem 2013; 32: 221-237