Der Nuklearmediziner 2018; 41(01): 81-88
DOI: 10.1055/s-0043-120731
Dosimetrie
© Georg Thieme Verlag KG Stuttgart · New York

Dosimetrie bei der Selektiven Internen Radiotherapie (SIRT)

Dosimetry in Selective Internal Radiotherapy (SIRT)
Oliver S. Großer
Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R, Magdeburg, Deutschland
,
Philipp Genseke
Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R, Magdeburg, Deutschland
,
Michael C. Kreißl
Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R, Magdeburg, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
01 March 2018 (online)

Zusammenfassung

Für die Berechnung der Therapieaktivität im Rahmen der Selektiven Internen Radiotherapie (SIRT oder auch Radioembolisation) existieren unterschiedlich elaborierte Berechnungsmodelle. Diese besitzen empirischen Charakter bzw. basieren auf makroskopischen Ansätzen unter der Annahme einer Gleichverteilung der Mikrosphären und damit der akkumulierten Dosis (MIRD-basierter Modellansatz). Eine Inhomogenität in der Anreicherung des Radioembolisats, welche regulär durch die post-therapeutische Bildgebung beobachtet wird, findet in den Dosierungskonzepten keine Berücksichtigung. Für die weitere Entwicklung wäre es hier wünschenswert, radiobiologische Konzepte stärker zu integrieren und eine Dosierung der Therapieaktivität unter Berücksichtigung der (limitierenden) gewebsspezifischen Toleranzen durchzuführen.

Generell sind die Bewertung der Effektivität und der Nebenwirkungen sowie die damit verbundene Definition von Toleranzdosen/Zieldosen schwierig. Die verfügbaren Daten weisen aufgrund der Heterogenität der untersuchten Endpunkte, unterschiedlicher basaler Leberfunktion und individueller Erkrankungshistorien (Vortherapie) eine große Streuung und eine damit verbundene große Unsicherheit auf.

Abstract

Models with different levels of elaboration are available for calculating treatment activity in Selective Internal Radiotherapy (SIRT or radioembolization). These either have empiric character or are based on macroscopic approaches assuming a uniform distribution of microspheres and therefore of accumulated dose (MIRD based modelling approach). The inhomogeneous accumulation of the radioembolizate, regularly observed by post-therapeutic imaging, is not taken into consideration by current dose concepts.

In the future, it would be preferable to integrate radiobiological concepts and to estimate therapeutic activity considering (limiting) tissue specific tolerances.

In general, assessment of therapeutic outcome and side effects including the definition of corresponding tolerance doses/target doses is challenging. Due to the heterogeneity of examined endpoints, different basic liver function and individual medical history (previous therapies), the available data exhibit a high spread and uncertainty.

 
  • Literatur

  • 1 Ahmadzadehfar H, Sabet A, Biermann K. et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med 2010; 51: 1206-1212
  • 2 Archer SG, Goldenberg DM. Vascularization of small liver metastases. Br J Surg 1989; 76: 545-548
  • 3 Breedis C, Young G. The blood supply of neoplasms in the liver. The American Journal of Pathology 1954; 30: 969
  • 4 Campbell AM, Bailey IH, Burton MA. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 2001; 46: 487-498
  • 5 Chiesa C, Maccauro M, Romito R. et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 2011; 55: 168-197
  • 6 Chiesa C, Mira M, Maccauro M. et al. A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with 90Y glass microspheres. Q J Nucl Med Mol Imaging 2012; 56: 503-508
  • 7 Cremonesi M, Chiesa C, Strigari L. et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4: 210
  • 8 Cremonesi M, Ferrari M, Bartolomei M. et al. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging 2008; 35: 2088-2096
  • 9 Cross W. A short atlas of beta-ray spectra. Phys Med Biol 1983; 28: 1251
  • 10 DʼArienzo M, Chiaramida P, Chiacchiararelli L. et al. 90Y PET-based dosimetry after selective internal radiotherapy treatments. Nucl Med Commun 2012; 33: 633-640
  • 11 Dawson LA, Normolle D, Balter JM. et al. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002; 53: 810-821
  • 12 Denecke T, Rühl R, Hildebrandt B. et al. Planning transarterial radioembolization of colorectal liver metastases with Yttrium 90 microspheres: evaluation of a sequential diagnostic approach using radiologic and nuclear medicine imaging techniques. Eur Radiol 2008; 18: 892-902
  • 13 Dhabuwala A, Lamerton P, Stubbs RS. Relationship of 99mtechnetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following Selective Internal Radiation Therapy (SIRT). BMC Nucl Med 2005; 5: 7
  • 14 Emami B, Lyman J, Brown A. et al. Tolerance of normal tissue to therapeutic irradiation. Radiation Oncology Biology 1991; 21: 109-122
  • 15 Garin E, Lenoir L, Edeline J. et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging 2013; 40: 1057-1068
  • 16 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012; 53: 255-263
  • 17 Gates VL, Esmail AAH, Marshall K. et al. Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med 2011; 52: 72-76
  • 18 Giammarile F, Bodei L, Chiesa C. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2011; 38: 1393-1406
  • 19 Gil-Alzugaray B, Chopitea A, Inarrairaegui M. et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013; 57: 1078-1087
  • 20 Gray B, van Hazel G, Hope M. et al. Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 2001; 12: 1711-1720
  • 21 Grosser OS, Ulrich G, Furth C. et al. Intrahepatic Activity Distribution in Radioembolization with Yttrium-90-Labeled Resin Microspheres Using the Body Surface Area Method-A Less than Perfect Model. JVIR 2015; 26: 1615-1621
  • 22 Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: The MIRD equations for dose calculations. J Nucl Med 2006; 47: 1209-1211
  • 23 Hamami ME, Poeppel TD, Müller S. et al. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med 2009; 50: 688-692
  • 24 Helmberger T, Hoffmann RT, Jakobs T. et al. [Liver tumor ablation]. Radiologe 2005; 45: 55-62
  • 25 Ho S, Lau WY, Leung TW. et al. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 1997; 24: 293-298
  • 26 Ho S, Lau WY, Leung TW. et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 1996; 23: 947-952
  • 27 Kao YH, Hock Tan AE, Burgmans MC. et al. Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 2012; 53: 559-566
  • 28 Kao YH, Steinberg JD, Tay YS. et al. Post-radioembolization yttrium-90 PET/CT – part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res 2013; 3: 57
  • 29 Kennedy A, Nag S, Salem R. et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Radiation Oncology Biology 2007; 68: 13-23
  • 30 Kennedy AS, Dezarn WA, McNeillie P. et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol 2008; 31: 271-279
  • 31 Kennedy AS, McNeillie P, Dezarn WA. et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 2009; 74: 1494-1500
  • 32 Knesaurek K, Machac J, Muzinic M. et al. Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99m (99mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Technol Cancer Res Treat 2010; 9: 253-262
  • 33 Lam MGEH, Louie JD, Abdelmaksoud MHK. et al. Limitations of body surface area-based activity calculation for radioembolization of hepatic metastases in colorectal cancer. JVIR 2014; 25: 1085-1093
  • 34 Lhommel R, van Elmbt L, Goffette P. et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 2010; 37: 1654-1662
  • 35 International Commission on Radiation Units and Measurements. ICRU Report No. 44: Tissue substitutes in radiation dosimetry and measurement. Bethesda, MD, USA: 1989
  • 36 Muller JH, Rossier PH. Treatment of cancer of the lungs by artificial radioactivity. Experientia 1947; 3: 75
  • 37 Muller JH, Rossier PH. A new method for the treatment of cancer of the lungs by means of artificial radioactivity. Acta Radiol 1951; 35: 449-468
  • 38 Murthy R, Nunez R, Szklaruk J. et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. RadioGraphics 2005; 25: S41-S55
  • 39 Murthy R, Xiong H, Nunez R. et al. Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results. JVIR 2005; 16: 937-945
  • 40 Nijsen JF, Zonnenberg BA, Woittiez J. et al. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med 1999; 26: 699-704
  • 41 MDS Nordion. TheraSphere Yttrium-90-Mikroglasperlen Gebrauchsanleitung German/Deutsch Rev. 8. 2017
  • 42 Rhee TK, Omary RA, Gates VL. et al. The effect of catheter-directed CT angiography on yttrium-90 radioembolization treatment of hepatocellular carcinoma. JVIR 2005; 16: 1085-1091
  • 43 Riaz A, Lewandowski RJ, Kulik LM. et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. JVIR 2009; 20: 1121-1131
  • 44 Ridge JA, Bading JR, Gelbard AS. et al. Perfusion of colorectal hepatic metastases. Relative distribution of flow from the hepatic artery and portal vein. Cancer 1987; 59: 1547-1553
  • 45 Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 2: special topics. JVIR 2006; 17: 1425-1439
  • 46 Samim M, Braat MNGJA, Lam MGEH. Radioembolization following Liver Resection: A Call for Dosimetry. JVIR 2016; 27: 612-613
  • 47 Sangro B, Inarrairaegui M, Bilbao JI. Radioembolization for hepatocellular carcinoma. J Hepatol 2012; 56: 464-473
  • 48 Shannon RA, Wasan HS, Love SB. et al. FOXFIRE: a phase III clinical trial of chemo-radio-embolisation as first-line treatment of liver metastases in patients with colorectal cancer. Clin Oncol 2008; 20: 261-263
  • 49 Shen S, DeNardo GL, DeNardo SJ. Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med. Phys 1994; 21: 1409-1417
  • 50 Shen S, DeNardo GL, Yuan A. et al. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 1994; 35: 1381-1389
  • 51 SirteX MEDICAL Ltd. SIR-Spheres Microspheres: Training Program: Physicians and Institutions. 2014
  • 52 SirteX MEDICAL Ltd. SIR-Spheres Microspheres package insert: EU-Version (CR2015). 2017
  • 53 SirteX MEDICAL Ltd. SIR-Spheres Microspheres package insert: US Version (CR2189). 2017
  • 54 Smits MLJ, Nijsen JFW, van den Bosch MAAJ. et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 2012; 13: 1025-1034
  • 55 Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294-310
  • 56 Stribley KV, Goldenberg DM, Chmiel RL. et al. Internal radiotherapy for hepatic metastases I: The homogeneity of hepatic arterial blood flow. J Surg Res 1983; 34: 17-24
  • 57 Stribley KV, Goldenberg DM, Chmiel RL. et al. Internal radiotherapy for hepatic metastases II: The blood supply to hepatic metastases. J Surg Res 1983; 34: 25-32
  • 58 Strigari L, Sciuto R, Rea S. et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med 2010; 51: 1377-1385
  • 59 Ulrich U, Dudeck O, Furth C. et al. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med 2013; 54: 516-522
  • 60 Virdee PS, Moschandreas J, Gebski V. et al. Protocol for Combined Analysis of FOXFIRE, SIRFLOX, and FOXFIRE-Global Randomized Phase III Trials of Chemotherapy +/– Selective Internal Radiation Therapy as First-Line Treatment for Patients With Metastatic Colorectal Cancer. JMIR Res Protoc 2017; 6: e43
  • 61 Welsh JS, Kennedy AS, Thomadsen B. Selective Internal Radiation Therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int J Radiat Oncol Biol Phys 2006; 66: S62-S73
  • 62 Williamson MA, Snyder LM. Wallach's Interpretation of Diagnostic Tests. Philadelphia, PA USA: Lippincott Williams & Wilkins; 2011: 1-1160
  • 63 Willowson KP, Tapner M, QUEST Investigator Team et al. A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study. Eur J Nucl Med Mol Imaging 2015; 42: 1202-1222
  • 64 Wondergem M, Smits MLJ, Elschot M. et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 2013; 54: 1294-1301
  • 65 Wright CL, Werner JD, Tran JM. et al. Radiation pneumonitis following yttrium-90 radioembolization: case report and literature review. JVIR 2012; 23: 669-674
  • 66 Zarva A, Mohnike K, Damm R. et al. Safety of repeated radioembolizations in patients with advanced primary and secondary liver tumors and progressive disease after first selective internal radiotherapy. J Nucl Med 2014; 55: 360-366
  • 67 FOXFIRE Clinical Trial, FOXFIRE. an open-label randomised phase III trial of 5-Fluorouracil, OXaliplatin and Folinic acid +/– Interventional Radio-Embolisation as first line treatment for patients with unresectable liver-only or liver-predominant metastatic colorectal cancer. ISRCTN83867919 http://www.isrctn.com/ISRCTN83867919 (abgerufen am 01.Oktober 2017)
  • 68 FOXFIREGlobal. clinical trial, FOLFOX6m Plus SIR-Spheres Microspheres vs FOLFOX6m Alone in Patients With Liver Mets From Primary Colorectal Cancer (FOXFIREGlobal). CT01721954 https://clinicaltrials.gov/ct2/show/NCT01721954 (abgerufen am 01.Oktober 2017)