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Introduction
In Germany, up to 75 % of the approx. 196,000 initial and 66,000 
repeated strokes are survived [1–4]. For the affected patients, it is 
often the trigger for persistent physical limitations, which in 85 % 
of the cases are manifested by the cardinal symptom of spastic or 
flaccid hemiparesis of the upper extremities. Restriction or even 
loss of function of the hand and arm drastically impacts the daily 
life of the affected individual [1, 5–7]. Demographic change has in-

creased the incidence of stroke. Improved acute care has enabled 
more people to survive the event, resulting in a greater number of 
patients and a growing demand for therapy [1, 2, 6]. Reduced range 
of motion, pain, sensory disturbances and increased muscle tone 
are characteristic patient symptoms [8, 9]. Loss of arm function is 
the consequence in about half of stroke cases [8], unlike rehabili-
tation of independent mobility, which can be achieved in up to 85 % 
of patients [10]. Consequently, relatively less time is devoted to re-
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Background  Stroke is associated with motor impairments of 
the upper extremities. The defining goal of rehabilitation is 
independent execution of activities of daily living. New therapy 
procedures use different hardware components to implement 
digital therapy contents. These can be useful complements to 
established therapy protocols.
Objectives  The aim of this study was to examine the effect of 
movement therapy with a robotic ball on motor function pa-
rameters in stroke patients.
Materials and Methods  25 patients (60.0 ± 10.0 years, 
172.5 ± 13.8 cm, 79.5 ± 13.8 kg, 89.8 ± 72.6 months post-
stroke) took part in this crossover study. The intervention and 
control periods comprised 12 weeks each. Training with the 
robotic ball was done in addition to standard therapy two times 
a week for 45 min each. Different game activities were carried 
out with the help of a tablet and a smartphone.
Results  Isometric grip strength improved by 4.5 ± 3.6 kg 
(p = 0.000), and unilateral dexterity increased by 7.5 ± 6.3 suc-
cessful tries (p = 0.000) in the round block test. The self-report-
ed disabilities of the arm, shoulder and hand were assessed 
using the QuickDASH questionnaire and showed improve-
ments by 12.4 ± 13.0 points (p = 0.001).
Conclusions  Additional therapy using the robotic ball im-
proved upper extremity motor function and self-perceived 
health status in chronic stroke patients. However, performance 
stagnated when standard therapy was implemented alone. 
Moderately affected patients seem to benefit the most. The 
presence of very severe motor or cognitive symptoms led, in 
part, to some dropouts. The results need to be verified using 
larger patient populations.
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covery of hand and arm function [11]. In addition to effects on 
motor function there are often psychological and social conse-
quences [12]. A variety of physical activity measures should con-
tribute to the compensation and restoration of skills and abilities 
[13, 14]. Since it is still possible to make progress even weeks after 
a stroke, it is imperative to develop more effective therapeutic 
methods, especially in the case of sustained loss of upper extrem-
ity function [8]. Thus the severity and location of the cerebral in-
sult as well as comorbidities are decisive for the further rehabilita-
tion process [15, 16]. The success of Constraint-induced Movement 
Therapy (CIMT) [7, 17–24] demonstrates the necessity and possi-
ble benefit of using the upper extremities during training and 
everyday life.

In this context as well as due to innovative developments in tech-
nology-supported concepts and components [25–30] in the field 
of stroke rehabilitation such as exergaming, [31–34] the “Sphero 
2.0” robotic ball was reviewed in combination with game-playing 
applications as a supplemental therapeutic activity [35]. The po-
tential benefit for stroke patients regarding improving motor pa-
rameters has been documented in review articles on technolo-
gy-supported therapeutic measures [36, 37]. Hardware and soft-
ware components from the enter tainment industr y or 
telecommunications are used to develop new therapy activities. 
There are examples of the Microsoft Kinect webcam used in stroke 

rehabilitation [30, 38–44] as well as for game consoles such as the 
Nintendo Wii [45–47], Sony Playstation [48] or Microsoft XBox [44]. 
In addition, smartphones [34], tablets [49–52] or virtual reality 
goggles [53] are being used to employ generally commercially 
available games with potential therapeutic benefits, or to use their 
sensor systems for movement detection and control. Therapeutic 
content can be found in commercial video games such as Wii Sports 
[54] or Kinect Sports [44] as well as games programmed specifical-
ly for therapeutic applications [42, 55]. Their common element is 
the required use of the affected body half to achieve the respective 
game objective. The activity can reflect daily activities such as 
grasping and moving a glass [56], cooking [38], or striking select-
ed piano keys [38, 49].

Objective and Issues Addressed
The effect of movement therapy of stroke patients utilizing a ro-
botic ball based on selected motor parameters will be investigated 
using a crossover study design. The motor functionality of the 
upper extremities will be quantified using subjective and objective 
assessments. The aim is to investigate the effect of a robotic ball 
with various play activities in addition to standard therapy.

Methodology

Study design
The study was conducted based on a crossover design. Group 1 
started in Phase 1 with standard therapy, supplemented by robot-
ic ball therapy; Phase 2 used only standard therapeutic procedures. 
The process for Group 2 was reversed (▶Fig. 1). Training with the 
robotic ball involved 24 units for each patient, two times per week, 
each 45 min in duration. Standard therapy (generally 1–2 applica-
tions during 1–2 sessions per week) included physiotherapy and 
occupational therapy, and as needed, logotherapeutic activities. 
These included classical physiotherapeutic approaches such as re-
medial gymnastics for neurological diseases (Bobath, Vojta and 
PNF) as well as neuromuscular electrostimulation. Furthermore, 
mobilizing therapy exercises with heat application (fango, ultra-
sound, hot roller), classical massages or manual therapy were used; 
edema was treated with lymph drainage. Occupational therapy in-
cluded motor-functional, sensomotor-perceptive, psychological 
as well as neuropsychological treatment measures. The study was 
reviewed and approved by the local ethics committee (VS-129-HS).

Sampling
After prior verbal and written disclosure, 25 stroke patients volun-
teered for the study which was conducted in an outpatient rehabil-
itation center, respecting patient privacy (▶Table 1). Twenty-three 
of the patients had experienced a stroke more than 6 months prior 
to the study [57].

Hardware/software
Supplemental training employed the “Sphere 2.0” robotic ball (Or-
botix, Colorado, USA) using firmware ver. 3.73 (▶Fig. 2). The ap-
plications were controlled using a Cubot X15 smartphone (Android 
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Standard therapy + 
robotic ball

Standard therapy

Group 1 Group 2

Standard therapy

Phase 1 (12 weeks) Phase 2 (12 weeks)

Standard therapy + 
robotic ball

▶Fig. 1 Study design and phases.

▶Fig. 2 The “Sphero 2.0” robotic ball by Orbotix (Boulder, CO, 
USA).
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5.1) as well as an Apple Mini 2 iPad (iOS 9.2–10.2). In addition, a 
specially-developed holder was used as an aid is grasping the smart-
phone [35]. The therapeutic actions were implemented using the 
“Sphero” and “Sphero Chromo” apps.

Therapeutic activities
By moving the upper extremities, especially the hand, the patient 
actively tries to achieve the objectives of the respective game. The 
robotic ball is either held in the hand and turned in various direc-
tions (Chromo app) (▶Fig. 3) or remotely controlled by moving the 
smartphone (Sphero app) (▶Fig. 4). The study director performs 
device setup, configures motion tasks and provides support during 
patient training.

In addition to the wrist, the patient also partially moves the 
elbow and shoulder joints to involve the complete hand-arm-shoul-

der chain. Another challenge is the ability to grasp and turn the ball 
in a variety of ways. Numerous exercise variations allow a wide 
range of therapeutic options depending on symptom manifesta-
tion. Simple aids (tenpins, floor mats, bars) can also be used to cre-
ate new movement tasks (▶Fig. 4).

Test procedures
Patient cognitive status was determined using the Montreal Cog-
nitive Assessment. A result greater than 26 points is considered 
“normal” [58]. Motor function was determined using isometric grip 
strength for 1–2 s (starting with the affected side, 3 attempts; 
healthy side as reference in 2 attempts). This parameter is used as 
a marker for global functionality of the upper extremities as well as 
a measurement of rehabilitation progress [59, 60]. The round block 
test was selected to determine unilateral dexterity of gross motor 

E328

▶Fig. 3 The “Chromo” game in both variants: unilateral and bilateral.

▶Fig. 4 “Sphero” game structure variations.
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movements. Within 60 s, as many cylinders as possible (diameter 
6.5 cm, thickness 2 cm) are turned with one hand into recesses 
(0.5 cm) on a wooden board (starting with the affected side, 3 at-
tempts; healthy side as reference in 2 attempts). In addition, the 
QuickDASH questionnaire assessed the subjective perception of 
the affected person with regard to their current state of health (0 
points ≙, no impairment up to 100 points ≙, maximum possible re-
striction) of the upper extremities [61, 62]. A difference of at least 
14 points is considered clinically relevant [63].

In order to carry out a differentiated data analysis, three perfor-
mance classes were formed for the parameters grip strength, uni-
lateral dexterity and personal health perception. Grouping patients 
as “severely affected”, “moderately affected” and “mildly affected” 
should help to specify the suitability of the therapy concept and to 
make apparent any differences depending on the degree of impair-
ment. Classification was done after randomization in percentage 
relation to the healthy half of the body (grip strength, round block) 
or to the lowest score as a measure of no impairment (QuickDASH). 
Severely affected ≙  ≤  20 %, moderately affected ≙ 20 to  ≤  75 % and 
mildly affected ≙  >  75 %.

Statistics
Statistical analysis was performed using IBM SPSS Statistics version 
24. The significance level was defined as α = 5 %. The pre/post com-
parison of the results used the nonparametric Wilcoxon test meas-
urement method and sign test. The results were calculated accord-
ing to Cohen’s d effect size [64].

d
MV MV

SD

t2 t1

pool




This is interpreted in the following intervals: 0.2–0.5 ≙ small 
 effect, 0.5-0.8 ≙ medium effect,  >  0.8 ≙ large effect. ANOVA was 
used to verify the influence of the therapy form (standard therapy 
and additional robotic ball training) as well as the group affiliation 
(sequence of the therapy application) on differences in the assess-
ments.

Furthermore, the root-mean-square error (RMSE) was calculat-
ed in order to include the minimum effect for the underlying sam-
ple in the interpretation based on the variability of the data after 
several measured attempts (grip strength, round block).

Effectmin = RMSE  2.77

The confidence interval for the effect was formed in order to fur-
ther classify the results, thus allowing specification of a value range 
within which the true value for the effect for the population can be 
determined with 95 % confidence.

EffectCI = Mean Difference ± (1.96  Standard error)

Results
Twenty of 25 patients could complete the intervention in its entire-
ty. There were dropouts in both Group 1 (n = 2) and Group 2 (n = 3). 
In four cases this was due to the severity of symptoms (particular-

ly finger flexion spasticity), and in one case, too severe cognitive 
impairments. On the whole, grip strength increased by 4.5 ± 3.6 kg 
(p = 0.000), corresponding to an improvement of 43.9 ± 30.4 to 
53.8 ± 33.8 % relative to the healthy body half. Group 2 showed a 
lower initial level of grip strength compared to Group 1. Moderate-
ly affected patients (n = 11) improved by 5.4 ± 2.8 kg (p = 0.003), 
corresponding to an improvement of 16.0 ± 9.1 % relative to the 
unaffected upper extremity. Mildly affected (n = 4) patients im-
proved by 7.3 ± 2.9 kg (≙ 5.5 ± 5.9 %), and the severely affected 
(n = 5) improved by 0.1 ± 0.5 kg (≙ 0.0 ± 0.7 %). In the round block 
test as a measure of unilateral dexterity, the subjects were able to 
improve by 7.5 ± 6.3 successful attempts per minute (p = 0.000), 
corresponding to an improvement of 29.6 ± 20.9 to 40.2 ± 25.9 % 
relative to the healthy body half. Regarding this parameter, Group 
2 demonstrated a weaker initial level compared to Group 1. Mod-
erately affected patients (n = 14) improved by 10.0 ± 6.0 attempts 
were again the strongest group (p = 0.000), corresponding to an 
improvement of 13.5 ± 9.9 % relative to the unaffected upper ex-
tremity. Severely affected patients (n = 6) improved by 1.9 ± 1.6 suc-
cessful attempts per minute (≙ 3.5 ± 3.8 %). Subjective health per-
ception improved among all subjects by 12.4 ± 13.0 points 
(p = 0.001), although the clinically relevant difference of 14 points 
[63] was narrowly missed. The group of moderately affected pa-
tients (n = 15) reached this threshold with 16.8 ± 11.9 points 
(p = 0.000). Severely affected patients (n = 2) improved by 3.4 ± 4.8 
points; mildly affected patients (n = 3) improved by 0.0 ± 2.3 points. 
Group 2 demonstrated fewer changes than Group 1 (Tab. 2).

Depending on the group at the respective study phase, the data 
clearly indicate that the greatest changes were achieved by both 
groups during the supplementary robotic ball training phase 
(▶Fig. 5). In addition, the data trend of Group 1 shows that the 
training effects during standard therapy did not persist, and in fact, 
even declined slightly (p = 0.005, d = 0.24). Twelve weeks after the 
intervention, grip strength, unilateral dexterity as well as subjec-
tive perception of health were still greater than the initial level. The 
form of therapy had a highly-significant influence on the differen-
tials in grip strength (ANOVA, p = 0.000) and unilateral dexterity 
(ANOVA, p = 0.000) Group affiliation (sequence of therapeutic ap-
plications) had no significant influence on the differences in grip 
strength (ANOVA, p = 0.346) or unilateral dexterity (ANOVA, 
p = 0.269). Regarding grip strength and health perception, both 
groups were at the same level, although initially Group 1 performed 
better in the round block test (▶Fig. 5). The subjective health per-
ception (QuickDASH) of both groups significantly improved during 
the robotic ball training phase (p = 0.001, d = -0.60) although the 
mean difference of 12.4 ± 13.0 varied substantially. If only moder-
ately affected patients are analyzed, the mean difference increases 
to 16.8 ± 11.9 points (p = 0.000, d = 1.01) which is clinically relevant 
[63]. Analysis of grip strength (p = 0.000, d = 0.33) and unilateral 
dexterity (p = 0.000, d = 0.47) after robotic ball training showed 
minor effects for the entire random sample. Both parameters 
showed greater improvement for moderately affected patients. 
Grip strength improved up to 66.6 ± 15.2 % (p = 0.003, d = 0.76), 
and unilateral dexterity increased to 53.4 ± 18,0 % (p = 0.000, 
d = 0.78) of the capacity of the unaffected body half. The differen-
tial between grip strength and unilateral dexterity showed no sta-
tistically significant relationship (p = 0.099, r = 0.38). In contrast to 
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the difference in unilateral dexterity (p = 0.5, r = -0.16), median grip 
strength was significantly related to the difference in subjective 
health perception (p = 0.042, r = -0.459).

Individual case analysis illustrates the heterogeneity of the sam-
ple performance level. In particular, the group of severely affected 
patients demonstrated fewer changes in the assessments in the 
course of the study (▶Fig. 6). At the start of the intervention, 
strong correlations (p = 0.000, R² = 0.768, d = 1.82) between health 
perception and grip strength or unilateral dexterity could be meas-
ured for the entire sample. In addition, an initially high level of per-
formance seemed to be improvable in some cases (▶Fig. 6). On 
average, Group 1 showed higher performance in terms of grip 
strength, and after completion of training, demonstrated greater 
effects (p = 0.007, d = 0.52) compared to Group 2 (p = 0.018, 
d = 0.25). With approximately equal effects in the round block test 
(Group 1: p = 0.002, d = 0.45 and Group 2: p = 0.008, d = 0.49), the 
differing grip strength was decisive for the large distinction be-
tween the two groups in terms of subjective health perception 
(▶ Fig. 5). Group 1 showed a clinically-relevant change of 14 
(p = 0.002, d = -1.16), whereas in Group 2 only a small effect 
(p = 0.289, d = -0.38) was achieved (▶Fig. 5). The correlation be-
tween the difference in the perception of health and the differenc-
es between gripping strength and unilateral dexterity was not sta-
tistically significant (p = 0.133, R² = 0.118, d = 0.37).

For the most part the data show a similar progression with few 
to no changes occurring in the standard therapy phase and distinct 
changes occurring with supplemental robotic ball therapy. Com-
parison of the standard therapy phases shows that the higher level 
of grip strength in Group 1 did not persist as a consequence of ro-
botic ball training ( − 2.16 kg), whereas in Group 2 the differences 
in grip strength during the standard therapy phase were minimal 
( − 0.4 kg) (▶Fig. 7). The median differentials in this phase differed 
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significantly in this phase (p = 0.004). Grip strength and unilateral 
dexterity increased; analogously the QuickDASH score declined, 
indicating improved subjective health perception.

Discussion
The data show that improved grip strength, combined with better 
everyday functioning, had a positive effect on the patients’ sub-
jective health perception. The strength of the hand when grasping 
is considered a prognostic indicator as well as a measure of the 
damage to the upper extremities in stroke patients [60]. This pa-
rameter is also a marker for estimating indication-specific mortal-
ity for middle-aged and older people and can be used as a predic-
tor of morbidity, infirmity and functional impairment [65, 66]. 
However, a relevant change in the subjective perception of health 
among either severely or mildly affected patients due to addition-
al therapy was not achieved. Severely pronounced symptoms could 
not therefore be improved so significantly that the patients’ gen-
eral health perception was positively influenced. In mildly impaired 
patients, the potential for improving health was low even before 
initiation of robotic ball therapy. Noticeable group differentials in 
grip strength, unilateral dexterity and health perception are due 
to the randomized and thus varying group distribution of the sub-

jects. The number of severely affected patients was greater in 
Group 2, which may explain the reduced effects. Differentiated 
analysis suggests that the therapy concept is not equally suitable 
for all stroke patients, but can complement the therapy, especial-
ly in moderately affected patients. In addition, non-specific effects 
should be taken into account which may have influenced the caus-
es of the effects. On the one hand, patients may have been par-
ticularly motivated by the innovative and previously completely 
unknown therapy opportunity. Furthermore, the intensity and 
scope of the therapy were significantly increased. The new and 
unique training stimulus had a particularly favorable effect on the 
therapy results (▶Table 2).

In addition to the results from the quantitative data analysis, di-
rect patient feedback was important in order to document further 
changes. In addition to the therapy time, the patients’ daily routine 
was taken into account. Behavior changes, for example in the form 
of additional use of the affected half of the body with more self-con-
fidence due to increased ability, could additionally influence the ef-
fects. Individual discussions frequently revealed a patient’s readi-
ness to increasingly use the affected body half. Positive perceptions 
such as increased strength and dexterity as well as a somewhat im-
proved exercise tolerance motivated the moderately affected in 
particular to apply different aspects of the training to everyday life, 
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▶Table 1 Anthropometry of the sample and stroke characteristics.

Gender Age [years] Size [cm] Weight [kg] Insult 
type

Post-stroke 
[months]

Symptom 
side

Handed-
ness

Moca

15 m, 10 
f

60.0 ± 10.0 172.5 ± 13.8 79.5 ± 13.8 20I, 5H 89.8 ± 72.6 14 r, 11 l 24 r, 1 l 23.8 ± 7.1

m male, f female, I ischemic, H hemorrhagic, r right, l left, Moca Montreal Cognitive Assessment (Normal is  > 26 points)



Neuendorf T et al. Movement Therapy of the … Neurology International Open 2017; 1: E326–E335

Original Article

E332

▶
Ta

bl
e 

2 
Pr

e/
po

st
 re

su
lts

 a
ft

er
 th

e 
ro

bo
tic

 b
al

l t
ra

in
in

g 
ph

as
e 

of
 is

om
et

ric
 g

rip
 st

re
ng

th
, u

ni
la

te
ra

l d
ex

te
rit

y 
as

 w
el

l a
s p

er
ce

iv
ed

 st
at

e 
of

 h
ea

lth
.

Gr
ou

p
Gr

ip
 s

tr
en

gt
h 

[k
g]

ro
un

d 
bl

oc
k 

[n
um

be
r 

of
 s

uc
ce

ss
fu

l a
tt

em
pt

s]
Q

ui
ck

D
A

SH

IM
IM

 %
FM

FM
 %

IM
IM

 %
FM

FM
 %

IM
FM

G
ro

up
 1

 
(in

te
rv

en
tio

n 
– 

st
an

da
rd

 
th

er
ap

y)
 n

 =
 1

0

15
.1

 ±
 8

.8
50

.9
 ±

 2
4.

0
19

.8
 ±

 9
.3

65
.2

 ±
 2

6.
1

22
.5

 ±
 1

4.
4

34
.7

 ±
 1

9.
5

29
.3

 ±
 1

6.
0

44
.1

 ±
 2

1.
1

53
.6

 ±
 1

7.
7

35
.0

 ±
 1

4.
1

p 
= 

0.
00

7 
* 

p 
= 

0.
00

2 
* 

 *
 

p 
= 

0.
00

2 
* 

 *
 

d 
= 

0.
52

d 
= 

0.
45

d 
= 

 −
 1

.1
6

Eff
ec

t m
in

 =
 3

.1
 kg

Eff
ec

t m
in

 =
 5

.5
Eff

ec
t m

in
 =

 1
4

Eff
ec

t m
in

 =
 2

.8
–6

.6
 kg

Eff
ec

t C
I 9

5 
%
 =

 4
.5

–9
.1

–

D
iff

M
V =

 4
.7

 ±
 3

.1
 kg

D
iff

M
V =

 6
.8

 ±
 3

.7
D

iff
M

V =
  −

 1
8.

6 
± 

13
.8

G
ro

up
 2

 
(s

ta
nd

ar
d 

th
er

ap
y 

– 
in

te
rv

en
tio

n)
 

n 
= 

10

14
.6

 ±
 1

5.
8

36
.9

 ±
 3

5.
7

18
.9

 ±
 1

8.
4

42
.3

 ±
 3

7.
8

14
.1

 ±
 1

2.
6

24
.6

 ±
 2

2.
1

22
.4

 ±
 2

0.
3

36
.3

 ±
 3

0.
6

50
.9

 ±
 2

3.
2

44
.8

 ±
 2

6.
5

p 
= 

0.
01

8 
* 

p 
= 

0.
00

8 
* 

 *
 

p 
= 

0.
28

9 
* 

 *
 

d 
= 

0.
25

d 
= 

0.
49

d 
= 

 −
 0

.2
8

Eff
ec

t m
in

 =
 4

.2
 kg

Eff
ec

t m
in

 =
 4

.0
Eff

ec
t m

in
 =

 1
4

Eff
ec

t C
I 9

5 
%
 =

 1
.7

–6
.8

 kg
Eff

ec
t C

I 9
5 

%
 =

 2
.0

–1
1.

4
–

D
iff

M
V =

 4
.3

 ±
 4

.2
 kg

D
iff

M
V =

 8
.3

 ±
 8

.4
D

iff
M

V =
  −

 6
.1

 ±
 9

.0

G
ro

up
 1

 +
 2

 
n 

= 
20

14
.9

 ±
 1

2.
5

43
.9

 ±
 3

0.
4

19
.4

 ±
 1

4.
3

53
.8

 ±
 3

3.
8

18
.3

 ±
 1

3.
9

29
.6

 ±
 2

0.
9

25
.9

 ±
 1

8.
1

40
.2

 ±
 2

5.
9

52
.3

 ±
 2

0.
1

39
.9

 ±
 2

1.
2

p 
= 

0.
00

0 
* 

p 
= 

0.
00

0 
* 

 *
 

p 
= 

0.
00

1 
* 

 *
 

d 
= 

0.
33

d 
= 

0.
47

d 
= 

 −
 0

.6
0

Eff
ec

t m
in

 =
 3

.6
 kg

Eff
ec

t m
in

 =
 4

.7
Eff

ec
t m

in
 =

 1
4

Eff
ec

t C
I 9

5 
%
 =

 2
.9

–6
.1

 kg
Eff

ec
t C

I 9
5 

%
 =

 4
.2

–9
.4

–

D
iff

M
V =

 4
.5

 ±
 3

.6
 kg

D
iff

M
V =

 7
.5

 ±
 6

.3
D

iff
M

V =
  −

 1
2.

4 
± 

13
.0

M
od

er
at

el
y 

aff
ec

te
d

n 
= 

11
 (G

F)
n 

= 
14

 (R
B)

n 
= 

15
 (Q

D
)

15
.6

 ±
 7

.6
50

.7
 ±

 1
8.

1
21

.0
 ±

 6
.8

66
.7

 ±
 1

5.
2

24
.6

 ±
 1

1.
3

39
.8

 ±
 1

5.
6

34
.5

 ±
 1

3.
9

53
.4

 ±
 1

8.
0

58
.8

 ±
 1

3.
7

42
.0

 ±
 1

9.
1

p 
= 

0.
00

3 
* 

p 
= 

0.
00

0 
* 

 *
 

p 
= 

0.
00

0 
* 

 *
 

d 
= 

0.
76

d 
= 

0.
78

d 
= 

 −
 1

.0
1

Eff
ec

t m
in

 =
 3

.1
 kg

Eff
ec

t m
in

 =
 5

.3
Eff

ec
t m

in
 =

 1
4

Eff
ec

t C
I 9

5 
%
 =

 3
.8

–7
.1

 kg
Eff

ec
t C

I 9
5 

%
 =

 7
.0

–1
3.

3
–

D
iff

M
V =

 5
.4

 ±
 2

.8
 kg

D
iff

M
V =

 1
0.

0 
± 

6.
0

D
iff

M
V =

  −
 1

6.
8 

± 
11

.9

IM
 In

iti
al

 m
ea

su
re

m
en

t,
 F

M
 F

in
al

 m
ea

su
re

m
en

t,
 IM

 %
 P

er
ce

nt
ag

e 
re

la
tio

n 
to

 th
e 

no
n-

aff
ec

te
d 

si
de

 a
t t

he
 ti

m
e 

of
 th

e 
in

iti
al

 m
ea

su
re

m
en

t,
 F

M
 %

 P
er

ce
nt

ag
e 

re
la

tio
n 

to
 th

e 
no

n-
aff

ec
te

d 
si

de
 a

t t
he

 ti
m

e 
of

 th
e 

fin
al

 m
ea

su
re

m
en

t,
  *

  W
ilc

ox
on

 T
es

t,
  *

  *
 S

ig
n 

te
st

, E
ffe

ct
m

in
 m

in
im

um
 e

ffe
ct

, E
ffe

ct
cI

 C
on

fid
en

ce
 in

te
rv

al
 fo

r t
he

 e
ffe

ct
, D

iff
M

V 
m

ea
n 

di
ffe

re
nc

e,
 d

 C
oh

en
’s

 d
 e

ffe
ct

 s
tr

en
gt

h,
 p

 s
ig

ni
fic

an
ce

 (p
re

/p
os

t 
co

m
pa

ris
on

), 
GS

 G
rip

 s
tr

en
gt

h,
 r

b 
Ro

un
d 

bl
oc

k,
 Q

D
 Q

ui
ck

D
A

SH



Neuendorf T et al. Movement Therapy of the … Neurology International Open 2017; 1: E326–E335 E333

especially including gripping and using objects (e. g. hanging laun-
dry, cooking, carrying utensils, using a keyboard). Thus, positive 
experiences in daily life and during training could contribute to in-
creasing acceptance of the therapy concept and being open to new 
activities. Several patients demonstrated the willingness to try new 
movements with the injured side and to consciously integrate them 
more often into their everyday life.

Based on an objective data analysis in combination with subjec-
tive experience reports and observations during therapy with ro-
botic ball training, it was possible to determine that the group of 
moderately-affected patients benefited the most from this meas-
ure (Tab. 2). Patients’ symptoms allowed the implementation of 
various game activities with tolerable challenges and intensity. Very 
severely affected patients were generally able to perform the ro-
botic ball therapy; however brain damage was so severe in these 
cases that this movement-therapeutic measure had its limits (4 
dropouts due to great motor limitations). Although these patients 
could perform fewer play variations, nevertheless, they profited 
from the therapy, reporting a noticeable relaxation of muscle tone 
in the hand and arm immediately after the therapy session, which 
continued for up to three hours after therapy. The games were par-
ticularly welcomed by patients undergoing long-term therapy who 
saw them as a goal-oriented, motivating and entertaining addition 
to the therapy routine. However, the dropouts show the limits of 
feasibility. Severe spasticity in the lower arm or the fingers in par-
ticular can make it impossible to hold the robotic ball or smart-
phone and thus perform the movements.

Prior experience with the robotic ball shows the potentials of 
this therapeutic concept. High acceptance by patients and thera-
pists due to entertaining and diversified therapy activities contrib-
uted to motivation and compliance. At the same time, these activ-
ities provided a measurable benefit with respect to the patients’ 
motor-related parameters. It remains to be seen whether minimal 
setup effort and intuitive operation allow independent use by 
trained patients in the home environment. Furthermore, the re-
sults should be verified based on a larger patient sample. In addi-
tion, brain activation (e. g. via fMRI, fNIRS, TMS, EEG) could be in-
vestigated in order to determine the possible effect of the move-
ments on neurophysiological processes (e. g. hemodynamics, 
electrical activity). It would then be possible to compare the extent 
and localization of brain activation with other activities and draw 
conclusions about processes of neurogenesis, plasticity and neu-
roprotection. The application of the therapy concept should be 
studied with respect to other pathologies, such as Parkinson’s dis-
ease or multiple sclerosis.

Summary and Outlook
1. Additional therapy using a robotic ball could profitably supple-

ment standard therapy. Positive changes in grip strength, unilat-
eral dexterity and subjective sense of health were apparent in the 
supplemental robotic ball training phase; however, performance 
in the standard therapy phase largely stagnated. Improvement in 
grip strength was related to an improved perception of health. 
Non-specific effects in conjunction with the new, unfamiliar train-
ing stimulus may have additionally influenced the results.

2. Objective data analysis, subjective observations as well as patient 
reports demonstrated the benefit of the therapy concept for 
moderately affected patients. Particularly in the vase of very 
severe symptom manifestation, not all therapeutic activities 
could be completely performed; therefore only minor effects 
could be achieved. Especially severe motor or cognitive limita-
tions could pose insurmountable barriers for patients; therefore 
the therapy concept could not be employed in individual cases.

To verify the results, robotic ball therapy should be used in a 
larger randomized study. Single-case analysis of the data show het-
erogeneity within the random sample and corresponding differ-
ences in effects. Application of this approach in the home environ-
ment should be studied. Furthermore, new specific therapeutic ac-
tivities should be developed for stroke patients.
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