Aktuelle Neurologie 2018; 45(06): 434-444
DOI: 10.1055/s-0043-122220
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Bewegungstherapie der oberen Extremitäten mit einem Roboterball bei Schlaganfallpatienten – Ergebnisse einer randomisierten kontrollierten Crossover-Studie

Movement Therapy of the Upper Extremities with a Robotic Ball in Stroke Patients: Results of a Randomized Controlled Crossover Study
Tilo Neuendorf
TU Chemnitz – Institut für Angewandte Bewegungswissenschaften – Professur Sportmedizin/-biologie
,
Daniel Zschäbitz
TU Chemnitz – Institut für Angewandte Bewegungswissenschaften – Professur Sportmedizin/-biologie
,
Nico Nitzsche
TU Chemnitz – Institut für Angewandte Bewegungswissenschaften – Professur Sportmedizin/-biologie
,
Henry Schulz
TU Chemnitz – Institut für Angewandte Bewegungswissenschaften – Professur Sportmedizin/-biologie
› Author Affiliations
Further Information

Publication History

Publication Date:
18 December 2017 (online)

Zusammenfassung

Hintergrund Der Schlaganfall ist für die betroffenen Patienten häufig mit motorischen Einschränkungen der oberen Extremitäten verbunden. Ein Ziel der anschließenden Rehabilitation ist die möglichst selbstständige Bewältigung der vielfältigen Aufgaben des täglichen Lebens. Neue Therapieverfahren nutzen verschiedene Hardwarekomponenten, um digitale Therapieinhalte umzusetzen. Diese können eine sinnvolle Ergänzung zu etablierten Standardverfahren darstellen.

Ziel der Arbeit In dieser Studie soll der Effekt eines innovativen bewegungstherapeutischen Therapiekonzepts mit einem Roboterball auf motorische Parameter bei Schlaganfallpatienten überprüft werden.

Material und Methoden An der Crossover-Studie nahmen 25 Patienten (60,0 ± 10,0 Jahre, 172,5 ± 13,8 cm, 79,5 ± 13,8 kg, 89,8 ± 72,6 Monate post-stroke) teil. Der Interventions- sowie der Kontrollzeitraum umfassten jeweils 12 Wochen. Das Training mit dem Roboterball erfolgte als Ergänzung zur Standardtherapie zweimal pro Woche für jeweils 45 min. Verschiedene spielerische Inhalte wurden mithilfe von einem Tablet und einem Smartphone durchgeführt.

Ergebnisse Die isometrische Greifkraft konnte um 4,5 ± 3,6 kg (p = 0,000) erhöht werden. Die unilaterale Geschicklichkeit im Roundblock-Test verbesserte sich um 7,5 ± 6,3 gültige Versuche (p = 0,000). Die durch den QuickDASH-Fragebogen erhobene subjektive Gesundheitswahrnehmung der Patienten verbesserte sich um 12,4 ± 13,0 Punkte (p = 0,001).

Diskussion Die zusätzliche Therapie mit dem Roboterball konnte die Funktionsfähigkeit der oberen Extremitäten bei chronischen Schlaganfallpatienten verbessern sowie deren subjektive Gesundheitswahrnehmung positiv beeinflussen. Hingegen stagnierte die Leistungsfähigkeit bei alleiniger Standardtherapie. Moderat betroffene Patienten profitierten am stärksten. Sehr stark ausgeprägte motorische oder kognitive Symptomatik führte teilweise zum Dropout. Die Ergebnisse sollten mit größeren Stichproben verifiziert werden.

Abstract

Background Stroke is associated with motor impairments of the upper extremities. The defining goal of rehabilitation is independent execution of activities of daily living. New therapy procedures use different hardware components to implement digital therapy contents. These can be useful complements to established therapy protocols.

Objectives The aim of this study was to examine the effect of movement therapy with a robotic ball on motor function parameters in stroke patients.

Materials and methods 25 patients (60.0 ± 10.0 years, 172.5 ± 13.8 cm, 79.5 ± 13.8 kg, 89.8 ± 72.6 months post-stroke) took part in this crossover study. The intervention and control periods comprised 12 weeks each. Training with the robotic ball was done in addition to standard therapy two times a week for 45 min each. Different game activities were carried out with the help of a tablet and a smartphone.

Results Isometric grip strength improved by 4.5 ± 3.6 kg (p = 0.000), and unilateral dexterity increased by 7.5 ± 6.3 valid tries (p = 0.000) in the round block test. The self-reported disabilities of the arm, shoulder and hand were assessed using the QuickDASH questionnaire and showed improvements by 12.4 ± 13.0 points (p = 0.001).

Conclusions Additional therapy using the robotic ball improved upper extremity motor function and self-perceived health status in chronic stroke patients. However, performance stagnated when standard therapy was implemented alone. Moderately affected patients seem to benefit the most. The presence of very severe motor or cognitive symptoms led, in part, to some dropouts. The results need to be verified using larger patient populations.

 
  • Literatur

  • 1 Busch M, Schienkiewitz A, Nowossadeck E. et al. Prävalenz des Schlaganfalls bei Erwachsenen im Alter von 40 bis 79 Jahren in Deutschland. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 5–6: 656-660
  • 2 Heuschmann P, Busse O, Wagner M. et al. Schlaganfallhäufigkeit und Versorgung von Schlaganfallpatienten in Deutschland. Akt Neurol 2010; 37: 333-340
  • 3 Kolominsky-Rabas PL, Sarti C, Heuschmann PU. et al. A prospective community-based study of stroke in Germany – the Erlangen Stroke Project (ESPRO) incidence and case fatality at 1, 3, and 12 months. Stroke 1998; 29: 2501-2506
  • 4 Palm F, Urbanek C, Rose S. et al. Stroke incidence and survival in Ludwigshafen am Rhein, Germany. Stroke 2010; 41: 1865-1870
  • 5 Johnston SC, Mendis S, Mathers CD. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. Lancet Neurol 2009; 8: 345-354
  • 6 Heuschmann P, Di Carlo A, Bejot Y. et al. Incidence of stroke in Europe at the beginning of the 21st century. Stroke 2009; 40: 1557-1563
  • 7 Wolf SL, Winstein CJ, Miller JP. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296: 2095-2104
  • 8 Broeks J, Lankhorst G, Rumping K. et al. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil 1999; 21: 357-364
  • 9 Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol 2009; 8: 741-754
  • 10 Kwakkel G, Kollen BJ, Wagenaar RC. Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy 1999; 85: 377-391
  • 11 Goldie P, Matyas T, Kinsella G. Movement rehabilitation following stroke. La Trobe University Victoria: Department of Health Housing and Community Services; 1993
  • 12 Schubert F, Lalouschek W. Schlaganfall. In: Lehrner J, Pusswald G, Fertl E. et al. (eds) Klinische Neuropsychologie. Grundlagen – Diagnostik – Rehabilitation. Heidelberg: Springer; 2006: 345-356
  • 13 Hauptmann B. Von der Theorie zur Praxis: Grundlagen prozedualen und motorischen Lernens. In: Dettmers C, Bülau P, Weiller C. (eds). Schlaganfall Rehabilitation. Bad Honnef: Hippocampus Verlag; 2007: 25-52
  • 14 Wulf G. Motorisches Lernen: Einflussgrößen und ihre Optimierung. In: Dettmers C, Bülau P, Weiller C. eds. Schlaganfall Rehabilitation. Bad Honnef: Hippocampus Verlag; 2008: 3-24
  • 15 McLean DE. Medical complications experienced by a cohort of stroke survivors during inpatient, tertiary-level stroke rehabilitation. Arch Phys Med Rehabil 2004; 85: 466-469
  • 16 Shelton F, Reding M. Effect of lesion location on upper limb motor recovery after stroke. Stroke 2001; 32: 107-112
  • 17 Azab M, Al-Jarrah M, Nazzal M. et al. Effectiveness of constraint-induced movement therapy (CIMT) as home-based therapy on Barthel Index in patients with chronic stroke. Top Stroke Rehabil 2009; 16: 207-211
  • 18 Dromerick AW, Edwards DF, Hahn M. et al. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?. Stroke 2000; 31: 2984-2988
  • 19 Hakkennes S, Keating JL. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Aust J Physiother 2005; 51: 221-231
  • 20 Kunkel A, Kopp B, Müller G. et al. Constraint-induced movement therapy for motor recovery in chronic stroke patients. Arch Phys Med Rehabil 1999; 80: 624-628
  • 21 Miltner WH, Bauder H, Sommer M. et al. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke a replication. Stroke 1999; 30: 586-592
  • 22 Sirtori V, Corbetta D, Moja L. et al. Constraint-induced movement therapy for upper extremities in stroke patients. The Cochrane Library 2009; 1-63
  • 23 Wolf SL, Thompson PA, Winstein CJ. et al. The EXCITE stroke trial comparing early and delayed constraint-induced movement therapy. Stroke 2010; 41: 2309-2315
  • 24 Wolf SL, Winstein CJ, Miller JP. et al. The EXCITE trial: Retention of improved upper extremity function among stroke survivors receiving CI movement therapy. Lancet Neurol 2008; 7: 33
  • 25 Allet L, Knols RH, Shirato K. et al. Wearable systems for monitoring mobility-related activities in chronic disease: a systematic review. Sensors 2010; 10: 9026-9052
  • 26 Bonato P. Wearable sensors and systems. IEEE Eng Med Biol Mag 2010; 29: 25-36
  • 27 Dobkin BH, Dorsch A. The promise of mHealth daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair 2011; 25: 788-798
  • 28 Lohse KR, Hilderman CG, Cheung KL. et al. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 2014; 9: e93318
  • 29 Loureiro RC, Harwin WS, Nagai K. et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput 2011; 49: 1103-1118
  • 30 Webster D, Celik O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J Neuroeng Rehabil 2014; 11: 108
  • 31 Alankus G, Lazar A, May M. et al. Towards customizable games for stroke rehabilitation. CHI 2010: Therapy and Rehabilitation 2010; 2113-2122
  • 32 Burke J, McNeill M, Charles D. et al. Serious games for upper limb rehabilitation following stroke. Conference in Games and Virtual Worlds for Serious Applications; 2009: 103-110
  • 33 Burke J, McNeill M, Charles DK. et al. Optimising engagement for stroke rehabilitation using serious games. Vis Comput 2009; 25: 1085-1099
  • 34 Ferreira C, Guimarães V, Santos A, Sousa I. Gamification of stroke rehabilitation exercises using a smartphone. Oldenburg: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare; 2014: 282-285
  • 35 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Neurorehabilitation mit einem Roboterball – ein geeignetes Therapiekonzept?. Neuroreha 2017; 9: 41-44
  • 36 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Technik-gestützte Bewegungstherapie der oberen Extremitäten nach Schlaganfall – eine aktuelle Übersicht. NeutroTransmitter 2017; 28: 42-47
  • 37 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Therapeutischer Effekt Sensor-gestützter Rehabilitationssysteme bei Schlaganfallpatienten. Akt Neurol 2016; 43: 24-31
  • 38 Colomer C, Llorens R, Noé E. et al. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil 2016; 13: 1-10
  • 39 Khotimah WN, Sholikah RW, Hariadi RR. Sitting to standing and walking therapy for post-stroke patients using virtual reality system. International Conference on Information, Communication Technology and System (ICTS). IEEE; 2015: 145-150
  • 40 Lange B, Chang C-Y, Suma E. et al. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. Conf Proc IEEE Eng Med Biol Soc 2011; 1831-1834
  • 41 Llorens R, Alcaniz M, Colomer C. et al. Balance recovery through virtual stepping exercises using Kinect skeleton tracking: a follow-up study with chronic stroke patients. Stud Health Technol Inform 2012; 181: 108-112
  • 42 Martel MRF, Colussi EL, Marchi ACBD. Effects of a video game-based intervention on the attention and functional independence of older adults after cerebrovascular accident. Fisioterapia e Pesquisa 2016; 23: 52-58
  • 43 Mousavi HondoriH, Khademi M. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J Med Eng 2014; 2014: 846514 doi:10.1155/2014/846514
  • 44 Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil 2013; 92: 871-880
  • 45 Goble DJ, Cone BL, Fling BW. Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”?. J Neuroeng Rehabil 2014; 11: 3-11
  • 46 Joo LY, Yin TS, Xu D. et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med 2010; 42: 437-441
  • 47 Saposnik G, Teasell R, Mamdani M. et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation a pilot randomized clinical trial and proof of principle. Stroke 2010; 41: 1477-1484
  • 48 Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther 2007; 31: 180-189
  • 49 Carabeo CGG, Dalida CMM, Padilla EMZ. et al. Stroke patient rehabilitation a pilot study of an android-based game. Simulation & Gaming 2014; 45: 151-166
  • 50 English BA, Howard AM. An adaptive robotic tablet gaming system for post-stroke hand function rehabilitation. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts. 2015: 207-208
  • 51 Rand D, Schejter-Margalit T, Dudkiewicz I. et al. The use of the iPad for poststroke hand rehabilitation; a pilot study. International Conference on Virtual Rehabilitation (ICVR). IEEE; 2013: 109-113
  • 52 Rand D, Zeilig G, Kizony R. Rehab-let: touchscreen tablet for self-training impaired dexterity post stroke: study protocol for a pilot randomized controlled trial. Trials 2015; 16: 277
  • 53 Ma M, Bechkoum K. Serious games for movement therapy after stroke. In: Systems, Man and Cybernetics. IEEE International Conference on Systems, Man and Cybernetics; 2008: 1872-1877
  • 54 Saposnik G, Cohen LG, Mamdani M. et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 2016; 15: 1019-1027
  • 55 Shin J-H, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil 2014; 11: 32
  • 56 Turolla A, Dam M, Ventura L. et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil 2013; 10: 85
  • 57 Veerbeek JM, Wegen E van, Peppen R van. et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9: e87987
  • 58 Nasreddine ZS, Phillips NA, Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695-699
  • 59 Boissy P, Bourbonnais D, Carlotti MM. et al. Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil 1999; 13: 354-362
  • 60 Sunderland A, Tinson D, Bradley L. et al. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry 1989; 52: 1267-1272
  • 61 Beaton DE, Wright JG, Katz JN. et al. Development of the QuickDASH: comparison of three item-reduction approaches. J Bone Joint Surg Am 2005; 87: 1038-1046
  • 62 Gummesson C, Ward MM, Atroshi I. The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): validity and reliability based on responses within the full-length DASH. BMC Musculoskelet Disord 2006; 7: 44
  • 63 Sorensen AA, Howard D, Tan WH. et al. Minimal clinically important differences of 3 patient-rated outcomes instruments. J Hand Surg Am 2013; 38: 641-649
  • 64 Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd. ed. New York: Lawrence Erlbaum Associates; 1988
  • 65 Sasaki H, Kasagi F, Yamada M. et al. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med 2007; 120: 337-342
  • 66 Syddall H, Cooper C, Martin F. et al. Is grip strength a useful single marker of frailty?. Age Ageing 2003; 32: 650-656