Systematic Review and Meta-Analysis: Safety and Efficacy of Saccharomyces boulardii for Prevention of Clostridioides difficile Infection

Raseen Tariq1,* Muhammad Waqas Tahir2,* Maham Hayat3 Darrell S. Pardi1 Sahil Khanna1

1 Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
2 Department of Internal Medicine, Rochester General Hospital, Rochester, New York, United States
3 Division of Gastroenterology and Hepatology, University of Oklahoma, Oklahoma, United States

Address for correspondence Sahil Khanna, MBBS, MS, 200 1st Street SW, Rochester, MN 55905, United States (e-mail: khanna.sahil@mayo.edu).

J Gastrointest Infect 2022;12:94–100.

* Co-first authors.

received May 11, 2022
first decision May 31, 2022
accepted after revision July 14, 2022
ISSN 2277-5862.

© 2023. Gastrointestinal Infection Society of India. All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd., A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
Abstract

Background *Clostridoides difficile* infection (CDI) is associated with frequent recurrences. The role of probiotics in preventing CDI remains unclear despite patients frequently using them.

Methods We performed a systematic-review and meta-analysis to evaluate the role of *Saccharomyces boulardii*, a yeast probiotic, in preventing primary or recurrent CDI in patients on systemic antimicrobial therapy. We searched MEDLINE, Embase, and Web of Science up to December 2021 to identify studies (case-control, cohort, or clinical trial studies) reporting the use of systemic antimicrobials with or without *S. boulardii* and providing information on primary or recurrent CDI. Pooled odds ratios with 95% confidence intervals were calculated using a random effects model.

Results Eight studies (six randomized control trials and two cohort studies) were included. Six studies with 9,712 patients evaluated primary prevention. The rate of CDI in patients who received *S. boulardii* was 0.73% (44/5977) compared to 1.09% (41/3735) in the control group. Meta-analysis showed no difference in the risk of CDI among the two groups (odds ratio [OR], 0.71; 95%CI, 0.46–1.10; *p* = 0.124) with no significant heterogeneity (*I^2* = 0%). In two studies with 292 patients evaluating secondary prevention, the rate of recurrent CDI was 36.73% (54/147) on *S. boulardii* compared to 46.20% (67/145) in controls, with no significant difference (*p* = 0.19). Subgroup analysis of studies using *S. boulardii* (250 mg twice daily) showed no difference in the CDI risk with or without *S. boulardii*. No serious adverse events from *S. boulardii* were noted.

Conclusion The use of *S. boulardii* appears to have no benefit for preventing either primary or recurrent CDI in patients taking systemic antimicrobials.

Keywords

- *Clostridoides difficile*
- *Saccharomyces boulardii*
- probiotics
- prevention
- antibiotic-associated diarrhea

Introduction

Clostridoides difficile infection (CDI) is the most common nosocomial infection in the United States, with almost half a million cases annually. Risk factors for CDI include those that predispose to microbial dysbiosis such as increasing age, inflammatory bowel disease, use of proton pump inhibitors and most importantly antibiotic exposure. The optimal approach to reduce the risk of CDI in patients who require systemic antimicrobial therapy remains unclear. Adjunctive therapy with probiotics has been widely used by patients in hopes to decrease the risk of CDI with or without guidance of clinicians. The goal of probiotic therapy is to try to colonize the intestinal tract and hopefully mitigate the effects of microbiota disruption. In addition, probiotics may interact with the host immune system to decrease pathogen invasion and toxin production. Although studies have shown most strains of probiotic to have good survival during passage through the gastrointestinal tract and remain metabolically active, most studies have shown very short persistence and transient engraftment if any.

Saccharomyces boulardii is a specific yeast-derived probiotic with a direct inhibitory action against *C. difficile* toxins. Two studies have shown that *S. boulardii* can upregulate specific anti-toxin A IgA expression in animal models of CDI. Another study demonstrated that *S. boulardii* leads to hydrolyzation of toxins A and B by protease production, thereby decreasing the toxin receptor binding and reducing some of the enterotoxic effects of toxin A. Due to the inhibiting toxin properties of *S. boulardii*, it is hypothesized to help decrease the risk of CDI recurrence, perhaps in a mechanism similar to the administration of monoclonal antibody bezlotoxumab that neutralizes toxin B.

Current studies evaluating the outcomes of probiotics in preventing CDI are inconsistent. A meta-analysis evaluating the use of probiotics found that the administration of probiotics closer to the first dose of antibiotics reduced the risk of CDI by > 50% in hospitalized patients. Another Cochrane review concluded that there was insufficient evidence to recommend probiotic therapy as an adjunct to CDI therapy for CDI. However, given the effects of probiotics seem to be strain-specific and most of the prior meta-analyses have included different strains of probiotics together, we performed a comprehensive systematic-review and meta-analysis to evaluate the role of *S. boulardii* only for primary and secondary CDI prevention in patients receiving systemic antimicrobial therapy.

Methods

All procedures used in this meta-analysis were consistent with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) and MOOSE (Meta-analysis of Observational Studies in Epidemiology) criteria for observational studies.
Selection Criteria
The studies considered in this meta-analysis were observational studies or clinical trials that evaluated patients on systemic antimicrobial therapy who did or did not receive S. boulardii and measured the incidence of primary or recurrent CDI. Primary prevention was defined as patients with no prior history of CDI receiving S. boulardii and secondary prevention was defined as patients with prior history of CDI receiving S. boulardii for prophylaxis of a future episode of CDI. We excluded studies that did not evaluate CDI as an outcome or if there were insufficient data to determine an estimated OR and 95% confidence interval (CI). Both studies with published full-text or studies available as abstracts were included.

Data Sources and Search Strategy
We conducted a comprehensive search of Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE, Ovid Embase, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, Web of Science, and Scopus from 2000 to December 2021. The search strategy was designed and conducted by study investigators (MWT and RT) and the Mayo Clinic library staff, independently. The search was limited to studies in the English language. Controlled vocabulary supplemented with keywords was used to search for studies of S. boulardii use and CDI. The main keywords used in the search were *Clostridioides difficile*, *Clostridium difficile*, *C. diff*, *C. difficile*, *Clostridium difficile* infection, *Clostridioides difficile* infection, *C. diff*, *C. difficile* associated diarrhea, *Clostridium difficile*-associated diarrhea or CDAD, or pseudomembranous colitis, or recurrence AND *S. boulardii* OR prophylaxis OR probiotics AND outcomes or infection. The search was limited to English-language publications. The actual strategy listing with all search terms and how they were combined is available in Supplementary Appendix A (available in the online version).

Literature Screening
Two authors (R.T. and M.W.T) independently reviewed the titles and abstracts of the identified studies, and those that did not answer the research question of interest were excluded. The full texts of the remaining articles were reviewed to determine inclusion criteria fulfillment. The reference lists of articles with information on the topic were also reviewed for additional pertinent studies. We also searched the abstracts from major Gastroenterology and Infectious Diseases Society meetings and conferences from 2000 to 2021. A flow diagram of included studies is shown in Fig. 1.

Quality Assessment
The Cochrane Collaboration risk of bias tool was used to assess the methodologic quality of the included trials, including the methods used to generate the randomization schedule and conceal allocation, blinding, completeness of outcome data, and evidence of selective outcome reporting (Supplementary Fig. S1, available in the online version). The Newcastle–Ottawa scale was used to assess the methodologic quality of case–control and cohort studies. In this scale, observational studies were scored across three categories using the following parameters: selection (four questions), comparability (two questions), and ascertainment of the outcome of interest (three questions). For each question, 1 point was given if the study met the criterion, except for comparability of study groups, in which 1 point was awarded if the study controlled for age, sex, or both, and 2 points if the study controlled other confounding factors (Table 1). Studies with a cumulative score of 7 or more were considered high-quality studies, studies with score between 4 and 6 were considered moderate-quality and low-quality studies if score was less than 4. Any discrepancies were addressed by a joint re-evaluation of the original article.

Data Abstraction
Data were independently abstracted to a predetermined collection form by two investigators (RT and MWT). Data were collected for each study, including study setting and design, year of publication, location, and primary outcome reported. Conflicts in data abstraction were resolved by consensus, referring to the original article. When data were missing, an attempt to contact primary authors was made for obtaining additional data.

Outcomes Assessed
Our primary analysis focused on assessing the risk of primary CDI and the risk of recurrent CDI in patients with history of CDI with or without S. boulardii.

Statistical Analyses
We used the random effects model described by DerSimonian and Laird to calculate the pooled OR and 95% CI for each study. We assessed heterogeneity within groups with the I^2 statistic, which estimates the proportion of total variation across studies that is due to heterogeneity in study.
patients, design, or interventions rather than chance. \(I^2 \) values greater than 50% were considered to suggest the presence of heterogeneity.\(^\text{17}\) Due to the number of studies < 10, publication bias was not assessed. All p-values were two-tailed and for all tests (except heterogeneity), a probability level less than 0.05 was considered statistically significant. Calculations were performed and graphs were constructed using the R version 4.0.3 package ‘meta’ version 5.2-0.

Results

Search Results
The described search strategy revealed 463 potentially relevant studies; titles and abstracts were screened, and full papers were obtained for relevant articles (► Fig. 1). In all, 45 full-text articles were reviewed, of which 37 were excluded for various reasons most commonly due to lack of CDI data as an outcome (► Fig. 1). A total of eight studies were included in this meta-analysis of and all were full-text.

Characteristics of Included Studies
Of the eight studies included, six assessed primary prophylaxis and two assessed secondary prophylaxis. Six studies included hospitalized patients only and two included outpatients and hospitalized patients. Two studies were cohort, and the rest were randomized controlled trials. Study recruitment periods ranged from 1988 to 2017. All patients received systemic antibiotics. The dose of *S. boulardii* ranged from 226 mg to 1 g total daily dose. The follow-up time to assess for CDI occurrence was variable and ranged from the duration of antibiotics to 12 weeks (► Table 1).

Quality of Included Studies
The risk of bias of included studies is shown in ► Supplementary Fig. S1 (available in the online version only). Most studies were considered low-risk bias based on the Cochrane risk of bias tool. For two cohort studies, the median score was 7 (range 7–8), rating as high-quality studies.

S. boulardii for Primary Prevention
Of the 9,712 patients (in six studies) evaluated for primary prevention of CDI, 61.5% (5,977) received *S. boulardii*. Among these, the rate of CDI was 0.73% (44/5,977) compared to 1.09% (41/3,735) of the group that did not receive *S. boulardii*. A meta-analysis using random effects model showed no difference in the risk of CDI among the two groups (odds ratio [OR], 0.71; 95%CI, 0.46–1.10; \(p = 0.124 \)). There was no significant heterogeneity among the studies, with an \(I^2 \) value of 0.0% (► Fig. 2).

Sensitivity Analysis
This analysis was performed with one study removed from the six studies, which accounted for 90% of the total sample size to assess whether the study had a dominant effect on the summary.\(^\text{18}\) Of the 949 participants in the remaining five studies, 51.6% (490/949) received *S.
S. boulardii where the rate of CDI was 2.65% (13/490) compared to 3.05% (14/459) in the group that did not receive S. boulardii. Meta-analysis using the random effects model showed no difference in the risk of CDI among the two groups (odds ratio [OR], 0.78; 95% CI, 0.25–2.42; \(p = 0.571 \)). There was no significant heterogeneity among the studies, with an \(I^2 \) value of 15% (►Fig. 3).

Sub-Group Analysis of Studies using a Commonly used Dose 250 mg (Twice Daily)
Three studies used the same dosing of S. boulardii (250 mg twice daily), which was analyzed as a subgroup. Of the 729 participants in this subgroup, 52.7% (384/729) received S. boulardii. The rate of CDI was 2.08% (8/384) compared to 2.61% (9/345) in the group that did not receive S. boulardii. A meta-analysis using random effects model showed no difference in the risk of CDI among the two groups (odds ratio [OR], 0.61; 95% CI, 0.05–7.20; \(p = 0.477 \)). There was no significant heterogeneity among the studies, with an \(I^2 \) value of 19% (►Fig. 4). Due to the small number of studies in this analysis (\(n = 3 \)), publication bias was not assessed.

S. boulardii for Secondary Prevention
Among the 292 patients (in two studies) who were evaluated for the prevention of recurrent CDI, 50.3% (147/292) received S. boulardii. Among these, the rate of recurrent CDI was 36.73% (54/147) compared to 46.20% (67/145) in those who did not receive S. boulardii. Due to the small number of studies in this analysis (\(n = 2 \)), meta-analysis and publication bias were not calculated.

Adverse Events
Three studies reported no adverse events related to S. boulardii.\(^{19–21}\) One study reported constipation, abdominal pain, pruritus, headache, cutaneous rash, and fever. All adverse events were mild in severity. No cases of fungemia were recorded.\(^{22}\) One study reported nine adverse events in the S. boulardii group including three with a new gastrointestinal disorder, one cardiac death, one cholecystitis, two cases of bacterial sepsis, one pulmonary empyema, and one renal failure. None of the side effects were related to S. boulardii.\(^{23}\) Three studies included no data on adverse events.\(^{18,24,25}\)
Discussion

We found that use of *S. boulardii* was not associated with a decreased risk of primary or recurrent CDI in patients taking systemic antibiotics. A Cochrane review including 8,672 patients looked at probiotics for primary prevention of CDI in adults and children and suggested that probiotics are effective for preventing CDI with the number needed to treat being 42. However, of the 31 included studies, more than half had missing data and 21 had unclear or high risk of bias. A post-hoc subgroup analysis showed that probiotics were only effective among trials with a baseline CDI risk > 5%, which was higher than the average CDI risk in patients taking antibiotics. The results of the study were heavily influenced by five studies with CDI baseline risk > 15%, which was greater than the primary risk in any hospital setting.26 Another significant limitation of the meta-analysis was pooling studies with different species or strains and dosages of probiotics.27

The PLACID trial published in 2013 is the largest double-blind RCT to date for the primary prevention of CDI with probiotics. The trial did not find lower frequency of CDI in elderly inpatients after the administration of *Lactobacilli* and *Bifidobacteria*. The main limitation of the trial was low rate of CDI that limited the power of the study.28 Nevertheless, another meta-analysis that included the PLACID trial found no significant benefit of probiotics for the prevention of CDI.29 In light of low-quality evidence, probiotics for prophylaxis of primary or recurrent CDI is not recommended by the American College of Gastroenterology30 as well as the Infectious Diseases Society of America and Society for Healthcare Epidemiology of America.31

The pooled results of our meta-analysis are generally in line with prior studies and suggest no benefits of *S. boulardii* for CDI prevention. Some studies included in our meta-analysis were published in the 1990s and showed promise regarding the benefits of *S. boulardii* for preventing primary or secondary CDI; however, among those studies, the CDI risk was a secondary outcome with the prevention of antibiotic-associated diarrhea as the primary outcome. Since then, most published trials have shown no benefits of *S. boulardii*. A recent single-center retrospective cohort study included in our meta-analysis merged hospital prescribing data with CDI case data included 8,763 CDI patients and showed a protective effect on CDI incidence with a rate of CDI with *S. boulardii* of 0.56% versus no *S. boulardii* of 0.82%, OR 0.57 (0.33–0.96).18 This was the largest study in our meta-analysis driving most of the sample size for our results, hence a subgroup analysis excluding this study was performed which also showed no benefit of *S. boulardii*.

For primary CDI prevention, most studies used a dose of 250 mg of *S. boulardii* two times a day and one study used a lower dose of 113 mg two times a day. The subgroup analysis of only studies using 250 mg two times a day also did not find any benefit for preventing primary CDI with *S. boulardii*. For recurrent CDI prevention, both the trials used a higher dose of 1g daily. The duration of *S. boulardii* was variable and ranged from the duration of antibiotics to 4 weeks, hence no analysis could be performed based on duration. No serious adverse events related to *S. boulardii* were reported and there were no cases of fungemia reported in any of the studies.

Strengths of our study included the comprehensive literature search, strict inclusion criteria, and subgroup analysis. Most studies were high quality with low risk of bias. Our study has limitations. These include small sample sizes, heterogeneous patient populations, inconsistent follow-up periods, and lack of microbiome data among the included studies. Data regarding individual antibiotics were not available; hence we could not access the impact of use of *S. boulardii* with different classes of antibiotics. Additionally, most studies were underpowered, with CDI as a secondary outcome in studies done to assess the prevention of antibiotic-associated diarrhea.

In conclusion, our study shows that *S. boulardii* did not have any benefit on the development of primary or recurrent CDI. We believe that further studies should focus on understanding the mechanism of probiotics in the prevention of CDI before conducting further expensive RCTs.

Ethical Statement

This was a systematic review and meta-analysis with data available publicly, no patients were enrolled and hence ethical approval was not obtained.

Author Contributions

R.T.: concept, data interpretation, drafting and revision of manuscript; M.W.T.: data collection and interpretation, drafting and revision of the manuscript; M.H.: data collection and interpretation; D.S.P.: concept, data interpretation, drafting and revision of manuscript; S.K.: concept, data interpretation, drafting and revision of manuscript.

Data Availability Statement

This was a systematic review and meta-analysis with data available publicly, and no new data were generated.

Funding

None.

Conflict of Interest

None declared.

Acknowledgments

None.

References

Saccharomyces boulardii and Clostridioides difficile

Tariq et al.

3 Parkes GC, Sanderson JD, Whealan K. The mechanisms and efficacy of probiotics in the prevention of *Clostridium difficile*-associated diarrhoea. Lancet Infect Dis 2009;9(04):237–244

18 Wombwell E, Patterson ME, Bransteitter B, Gillen LR. The effect of *Saccharomyces boulardii* primary prevention on risk of hospital-onset *Clostridiodes difficile* infection in hospitalized patients administered antibiotics frequently associated with *C. difficile* infection. Clin Infect Dis 2021;73(08):e2512–e2518

