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Bone marrow disorders cover a wide range of conditions,
such as neoplastic, septic, rheumatologic, traumatic, and
metabolic disorders. Although conventional magnetic reso-
nance imaging (MRI) remains themodality of choice for their
assessment, the last few decades have seen the emergence of
novel MRI techniques: chemical shift imaging (CSI), diffu-
sion-weighted imaging (DWI), dynamic contrast-enhanced
(DCE) MRI, and whole-body MRI, along with spectral com-
puted tomography (CT) and nuclear medicine techniques.

These developments have been the focus of an increasing
body of literature, with promising results covering both
qualitative and quantitative analyses in a variety of
conditions.

To understand how these techniques can be applied to
various clinical scenarios, we provide an overview of their
technical basics in relation to common physiologic and
pathologic processes involving the bone marrow. Based on
a review of the relevant literature, we discuss the strengths
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Abstract Conventional magnetic resonance imaging (MRI) remains the modality of choice to
image bonemarrow. However, the last few decades have witnessed the emergence and
development of novel MRI techniques, such as chemical shift imaging, diffusion-
weighted imaging, dynamic contrast-enhanced MRI, and whole-body MRI, as well as
spectral computed tomography and nuclear medicine techniques. We summarize the
technical bases behind these methods, in relation to the common physiologic and
pathologic processes involving the bone marrow. We present the strengths and
limitations of these imaging methods and consider their added value compared
with conventional imaging in assessing non-neoplastic disorders like septic, rheuma-
tologic, traumatic, and metabolic conditions. The potential usefulness of these
methods to differentiate between benign and malignant bone marrow lesions is
discussed. Finally, we consider the limitations hampering a more widespread use of
these techniques in clinical practice.
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and limitations of these imaging methods to assess the most
common non-neoplastic conditions and to differentiate
them from neoplastic conditions, keeping the focus on
clinical utility (►Table 1).

Fat, Cellularity, and Vascularity: Bone
MarrowPhysiologic and Pathologic Changes
Relevant to Marrow Imaging

To understand the contribution of different imaging techni-
ques in investigating normal and pathologic conditions of
bone marrow, following is a review of the basics of marrow
pathophysiology.

First, normal bone marrow, whether yellow or red,
contains a variable amount of fat. The proportion of water
and fat content varies depending on the composition of
bone marrow, related to several physiologic processes (in-
cluding the transformation of red-to-yellow marrow with
age, premenopausal status, etc.). In pathologic conditions
the proportion of water and fat also changes with water
content increasing relative to fat content. CSI and magnetic
resonance spectroscopy (H1-MRS) can probe the fat content
and quantify it to differentiate marrow-replacing lesions
(where marrow fat is replaced, due to the presence of either
malignant or benign lesions) from non–marrow-replacing
lesions (where marrow fat is preserved, usually in relation
to a benign lesion). Dual-energy computed tomography
(DECT) and virtual non-calcium (VNCa) reconstructions
can analyze bone marrow water and fat content by sup-
pressing the attenuation component of mineralized bone,
thanks to tissue characterization based on the atomic
number Z and the photoelectric effect.

Second, many pathologic marrow conditions are charac-
terized by increased water content, decreased fat content,
increased vascularity, and destruction of the trabecular bone
structure, all of which lead to increased diffusivity. DWI
exploits the Brownian motion of water molecules and is
sensitive to conditions where this motion is altered. The
apparent diffusion coefficient (ADC) enables a quantitative
evaluation of diffusion restriction.

Third, marrow pathologies show increased vascularity
that may be assessed by DCE-MRI.

Finally, nuclear medicine and metabolic imaging examine
the distribution of specific components of the hematopoietic
and reticuloendothelial systems or the metabolic activity in
bone marrow.

Chemical Shift Imaging

Technique
CSI takes advantage of the slight difference in resonance
frequency that exists between water and fat protons to
provide a series of four sets of images: in-phase (IP), out-
of-phase (OP), water only (WO), and fat only (FO). Although
Dixon described it in the 1980s, it has only recently become
possible to associate this method with spin-echo–based
sequences, the backbone of musculoskeletal MRI protocols,
opening the door for multiple applications in this field.

CSIMRI can also be used to probebonemarrow fat content
quantitatively, by measuring the signal drop between IP and
OP images or by calculating the fat fraction (FF). This can be
done both on gradient-echo and spin-echo sequences.

Normal Bone Marrow
The variation of signal intensity in normal bone marrow
parallels the relative amount of water and fat protons, itself
correlated to the relative amount of red and yellow bone
marrow. Just as for T1-weighted sequences, red marrow
presents lower signal intensity than yellow marrow on FO
images due to its lower fat content. Furthermore, redmarrow
is lower in signal intensity on T2 IP images than red marrow.

At quantitative analysis, normal bone marrow shows a
significant drop in signal intensity due to the presence of fat
protons that at least partially cancel the signal of water, with
a wide range of normal values due to variable marrow
composition. It is reported that normal bone marrow should
present a drop of at least 20% on OP compared with IP
images.1,2 The mean FF for normal vertebral marrow varies
greatly, ranging between 13.7% and 83% (mean:
50.51�14.69%).3 FF of normal bone marrow varies with
age, sex, and menstrual status; premenopausal women
have higher marrow cellularity than men, whereas bone
marrow fat increases with age in both sexes.4

Clinical Applications

Robust Fat Suppression Technique
The Dixon method has mostly been used as a fat suppression
technique that has proved to be more robust to magnetic
field inhomogeneities than chemical shift selective suppres-
sion (CHESS) while providing a better signal-to-noise ratio
than short tau inversion recovery (STIR) sequences.5,6 There-
fore, it is an appealing technique for largefield-of-view (FOV)
imaging of the bone marrow.

Optimization of Magnetic Resonance Imaging Protocols
The four sets of images generated by a Dixon sequence can be
used to optimize MRI protocols, particularly when using a
fast spin-echo (FSE) T2-weighted Dixon sequence. Through a
single acquisition, both fat-suppressed and non–fat-sup-
pressed fluid-sensitive images can be obtained. IP T2 images
are equivalent to T2 FSE images, whereas WO images corre-
spond to fat-suppressed T2 images. Furthermore, FO T2
images are not only sensitive but also specific to the signal
of fat and can substitute T1-weighted images for the assess-
ment of tissue fat content.7–11 The potential of T2 FO images
to replace T1-weighted images has been validated in a few
studies addressing lesion detection in multiple myeloma,8

metastases,9,12 and characterization of vertebral compres-
sion fractures (VCFs).13 For the common scenario of MRI in
the context of nonspecific low back pain, a single sagittal T2-
weighted Dixon sequence may replace the combination of
T1-weighted, T2-weighted, and fat-suppressed T2-weighted
sequences.7,10,14 Of note, quantitative information on bone
marrow fat content is also readily available when using
Dixon sequences.
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Lesion Characterization and Evaluation of Vertebral
Compression Fractures
On standard MRI, the interpretation of decreased signal
intensity on T1-weighted sequences is based on a compari-
son with an intrinsic reference (the signal intensity of
muscles), and it helps discriminate between non–marrow-
replacing lesions (T1 signal�muscle/disk), which are usually
benign, and marrow-replacing lesions (T1 signal<
muscle/disk)15–17 (►Fig. 1). This comes with a few caveats:
the signal intensity of muscle and disks that serve as a
reference can be altered, whereas some marrow-replacing
lesions may be spontaneously high in signal intensity (e.g.,
due to the presence of melanin or high protein content),
leading to false negatives. The interpretation of FO images,
which are fat specific, is more straightforward. The absence
of high-intensity pixels within a lesion is suggestive of a
marrow-replacing lesion, whereas non–marrow-replacing
lesions contain high-intensity pixels.

As discussed earlier, gradient-echo and FSE Dixon images
have been used to assess the fat content of bone marrow
quantitatively. Most reports found a threshold of 20% to be
effective in differentiating bone-marrow-replacing lesions
(signal drop � 20%) from non–bone-marrow-replacing, (sig-
nal drop > 20%), which are usually benign.1,2 The need for
biopsy could be eliminated in>60% of patients with benign
disease as demonstrated in a monocentric study.18 In addi-
tion, CSI is useful to confirm the diagnosis of focal hemato-
poietic bone marrow islands and avoid unnecessary follow-
up.19 However, the measurement may depend on the types
of sequences used, and other thresholds have occasionally
been reported.20

A quantitative evaluation of intralesional fat through the
calculation of FF maps, either with gradient-echo or spin-
echo–based sequences, has also shown potential to differen-
tiate benign from malignant lesions accurately.3,21,22

Axial Spondyloarthropathy
A single T2-weighted Dixon sequence was shown to provide
all the information to assess inflammatory and structural
lesions of spondylarthritis in the spine and sacroiliac joints,
and it may replace standard T1 and fat-suppressed fluid-
sensitive sequences23,24 (►Fig. 2). The robust fat suppression
and reduced examination time are additional assets for large
FOV acquisitions.

Miscellaneous Marrow Conditions
Quantitative studies of marrow adiposity in osteoporosis
showed increased marrow fat fraction with age and with
decreased bone mineral density.25–27 In clinical research, FF
could be used as a biomarker for osteoporosis, knowing there
is an overlap with healthy subjects.27 In addition, some
authors used OP images to detect ankle and foot fractures,28

measure tumor size,29 and assess femoral head osteonecro-
sis.30 However, it is important to mention that the hypo-
intense lines referred to as “India ink artifacts” seen on theOP
images correspond to areas with an equal amount of water
and fat protons and should not be mistakenly interpreted as
fracture lines.

Pitfalls
Dixon images, especially two-point techniques, are prone to
fat-water swapping artifact that could be easily character-
ized as such by a side-to-side comparison of FO and WO
images.

Areas that contain a disproportionate amount of water
protons relative to fat protons (such as in cysts, abscesses,
and Schmorl’s nodes) intrinsically have low or no signal drop
on OP images, potentially leading to false-positive results31

(►Fig. 3). Sclerotic metastases have also been shown to be a
potential source of false-positive results, whose cause might
be multifactorial31 (►Fig. 3).

Another pitfall is hypocellular neoplasia, such as in mul-
tiple myeloma, where the presence of substantial remaining
fat may lead to false-negative FF findings.3,32

Finally, FF measurements depend on the acquisition
method used and their relative sensitivity to T1, T2, and
T2� decay,4,33 in addition to the lack of standardization and
variable thresholds that have been used across studies.3,21,22

These limitations apply to most currently available quanti-
tative applications. As a rule, overreliance on quantitative
assessments should be avoided and quantitative information
should rather be used as an adjunct to, rather than a substi-
tute for qualitative assessment, when necessary.

Diffusion-weighted Imaging

Technique
DWI assesses the self-diffusion, that is, the Brownian motion
of water molecules, influenced by the microscopic structure
and organization of biological tissues. The DWI signal is
influenced by the choice of the sequence and the strength
of the diffusion weighting given by the b-value. If two or
more images with different b-values are acquired, a quanti-
tativemeasurement of diffusionmay be obtained: the ADC.34

Most clinical DWI examinations are performed with
diffusion-weighted single-shot spin-echo echo planar imag-
ing (EPI) sequences, which have the advantage of being fast,
and therefore relatively robust against motion artifacts.35

However, EPI sequences have limited spatial resolution (i.e.,
128�128 pixels), increased susceptibility to magnetic field
inhomogeneities, and eddy currents.35 They are prone to
significant image distortion and susceptibility artifacts due
to the presence of the cortical bone–fat interface, and the
vicinity to the lungs and great vessels.36 Single-shot reduced
FOV EPI can reduce geometric distortion effects but reduces
signal-to-noise ratio and therefore requires longer scan
times.36 Multishot readout-segmented EPI sequences were
more recently proposed to decrease susceptibility and mo-
tion artifacts comparedwith single-shot EPI, with reasonable
scanning times.37

Of importance, the presence of fat reduces ADC values, and
the use of fat suppression techniques is usually required.34,35

Normal Bone Marrow
The ADC values of normal vertebral bone marrow range
between 0.2 and 0.6�10�3 mm2/s.35,38 These variations
are partly explained by technical parameters, such as
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Fig. 1 A 74-year-old woman with ovarian adenocarcinoma. (a) Sagittal reformat of fused fluorodeoxyglucose positron emission tomography/computed
tomography images showing focal uptake in L3 vertebral body (arrow;maximum standardized update value ¼ 6). Sagittal (b) T1-weighted, (c) fat-only, (d)
water-only, (e, g) in-phase, and (f, h) out-of-phase T2-weighted Dixon images. The lesion (arrows) contains fat with a drop in signal intensity of 36%,
suggestive of a non–marrow-replacing lesion. (g) Note the low signal intensity on the non–fat-suppressed image that concurs with benign nodularmarrow
hyperplasia. The lesion was unchanged on subsequent follow-up studies.
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differences in hardware, pulse sequences, diffusion weight-
ings, and postprocessing.

In addition, the diffusion properties of normal bone
marrow depend on physiologic parameters. The relative
amount of fat and water influence the ADC values, with
the ADC of fat close to zero.34,35 Therefore, DWI of the normal
bonemarrowmay vary depending on factors influencing the
FF, including sex, age, premenopausal status, as well as
anatomical location (axial versus peripheral skeleton, differ-
ent vertebral levels, pelvic bones, etc.).4,39,40 Any condition
influencing the red versus yellow marrow distribution and
the proportion of mineralized bone (osteoporosis, anemia)
may influence DWI35,40 (►Fig. 4).

Clinical Applications

Lesion Characterization and Evaluation of Vertebral
Compression Fractures
Bone marrow lesions, whether benign or malignant, have
higher ADCs than normal bone marrow. On one hand, this
finding can be explained because normal bone marrow has a
low signal on DWI and a low ADC value, mostly attributed to
the high fat content and the presence of bone trabeculae. On
the other hand, bone marrow lesions exhibit high tumoral
cellularity, decreased FF, increased water content and vascu-
larity, and disrupted trabeculae that likely contribute to the
higher signal on DWI and higher ADC values. Thanks to the
difference between normal marrow and malignant lesions,
DWI has been established as a method of reference to assess
bone marrow involvement in the oncologic setting.41–43 DWI
has also been used to differentiate between benign and
malignant bone marrow lesions.

In a meta-analysis, differentiation between benign and
malignant vertebral lesions based on quantitative analysis of
ADC values had pooled sensitivity and specificity of 89% and
87%, respectively.44 Note, however, that the group of benign
lesions included a wide range of pathologies including
infectious lesions, nodular hyperplastic bone marrow, and
other primary bone lesions. Due to their different tissue
characteristics, these lesions should present different ADC
values (e.g., hyperplastic bone marrow has low ADC value

due to the preserved bone and bone marrow structures),
making the analysis difficult. For the differentiation of
benign and malignant VCFs, ADC values yielded pooled
sensitivity and specificity of 92% and 91%, respectively.44

In practice, morphological analysis of VCFs most of the
time is sufficient for the diagnosis,13 and the added value
of DWI in caseswheremorphological analysis is inconclusive
remains to be determined.

Diabetic Foot
In diabetic patients, the distinction between pedal osteomy-
elitis and diabetic neuroarthropathy (Charcot’s arthropathy)
is challenging, and both conditions may coexist. Few studies
have investigated the use of DWI in diabetic feet with
discordant results. In two studies, ADC values were higher
in diabetic neuroarthropathy than in osteomyelitis, suggest-
ing a cut-off value of 0.98�10�3 mm2/s to differentiate the
two conditions,45,46 whereas there was a significant overlap
between the ADC values in a larger study that used a
normalized signal intensity for ADC.47 In a recently pub-
lished study, a readout-segmented multishot echo planar
DWI showed promising results to distinguish osteomyelitis
from bone marrow edema (BME) related to other conditions,
although there was again some overlap between the two
groups, with a 95% accuracy achieved in only 73% of cases.37

Spinal Infections
In vertebral end endplates with BME, on visual inspection of
DWI, the presence of the “claw sign,” defined as well-mar-
ginated linear regions of high signal located within the
adjacent vertebral bodies at the interface of normal-abnor-
mal marrow, was shown to be highly suggestive of Modic
type 1 degenerative changes, with its absence suggesting
infection.48 However, in practice, morphological assessment
on fat- and fluid-sensitive sequences, in addition to contrast-
enhanced sequences if needed, is sufficient in most cases,
and the added value of the claw sign in equivocal cases
remains to be determined.

ADC values of infectious bone marrow are significantly
higher than normal and degenerative bonemarrow, andDWI
has been proposed as an adjunct to conventional MRI to

Fig. 2 A 34-year-old man with axial spondyloarthropathy. Coronal oblique (a) water-only and (b) fat-only images of a single T2-weighted Dixon
show bone marrow edema-like signal intensity (a, white asterisks), subchondral erosions (a, arrows), and fat metaplasia (b, arrows). The T2-
weighted Dixon technique enables accurate depiction of signs of disease activity and structural bone changes in a single acquisition.
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detect spinal infections especially if intravenous contrast
injection is contraindicated49–51 (►Fig. 5). The applicability
of thresholds, however, is difficult in practice. The usefulness
of ADC values in differentiating malignancy from infection
was not consistently demonstrated across studies.50,52,53

Spondyloarthropathy
Few studies have assessed DWI to evaluate sacroiliitis,
mostly showing inferiority to STIR images, limited added
value to diagnose sacroiliitis, limited specificity, and poor
interobserver agreement.54–56 In one study, ADC values of

Fig. 3 An 82-year-old man with nontraumatic back pain. Sagittal (a) T1-weighted, (b) in-phase, (c) water-only, and (d) fat-onlyT2-weighted Dixon
images show a recent vertebral compression fracture (VCF) of T12 with an intravertebral horizontal fluid-filled cleft (b, c, arrow) in favor of a
benign VCF. However, the vertebral body did not show any residual fat (d), and there was no signal drop on out-of-phase images (e), suggestive of
a marrow-replacing lesion. In view of the discordance, a vertebral biopsy was performed (not shown) that was negative for malignancy. (g)
Sagittal reformat of computed tomography (CT) images show sclerotic changes in the posterior third of the vertebral body (arrow) and gas-
containing cleft (arrowhead) as sources of false-positive findings on quantitative analysis of Dixon imaging. Follow-up fluorodeoxyglucose
positron emission tomography/CT was negative for malignancy (not shown). Of importance, regions of interest should exclude fluid-filled
regions to avoid false-positive results (f).
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edematous changes of vertebral endplate of rheumatologic
origin were higher than those in Modic type 1 changes.57

Osteonecrosis
The T2-blackout effect on DWI (low DWI, low ADC) was
described as a sign of early bone infarct and sequestration in
a patient with sickle-cell disease.58 However, DWI has limit-

ed value in the staging of femoral head osteonecrosis in
clinical practice.30,59

Pitfalls
DWI encompasses a spectrum of sequences heavily influ-
enced by technical parameters and patient-related factors.
First, substantial technical variability exists among different

Fig. 4 A 65-year-old man with newly diagnosed rectal cancer referred for staging by magnetic resonance imaging (MRI) of the abdomen and
pelvis. Transverse (a) diffusion-weighted image (DWI) (b¼ 600) and (b) corresponding apparent diffusion coefficient (ADC) map and (c) T1-
weighted images show a diffuse increased signal of the marrow on DWI (a, asterisk) with restricted diffusion (ADC value: 0.62�10–3 mm2/s) and
normal T1 (c, asterisk). Known aneurysms of the iliac arteries treated by endovascular treatment (arrows). Transverse T1-weighted gradient-
echo (d) in-phase and (e) out-of-phase images performed in the routine protocol of the abdomen show a 68% signal drop, indicating residual fat
in keeping with marrow hyperplasia. The patient had severe anemia (Hb: 6.1mg/dL).

Fig. 5 A 29-year-old man with pyogenic spondylodiskitis. (a) Sagittal fat-suppressed T2-weighted image shows T8–T9 spondylodiskitis with a
spread of the infection to the prevertebral soft tissues (arrow). Sagittal left paramedian (b) fat-suppressed T2-weighted diffusion-weighted
image (DWI) (b¼ 700) and apparent diffusion coefficient map show a phlegmon involving the paravertebral soft tissues (asterisk) with areas of
restricted diffusion (c, d, arrows) corresponding to (micro)abscesses. DWI can be useful to detect soft tissue abscesses if intravenous contrast
injection is contraindicated.
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vendors and different institutions (e.g., EPI or FSE technique,
field strength, fat suppression, choice of b-values).34,35 Sec-
ond, DWI is influenced by patient-related factors, whether
physiologic (e.g., marrow composition, age, sex) or patho-
logic (e.g., anemia, osteoporosis)60 (►Fig. 4). Third, the most
widely used DWI techniques are EPI based that are prone to
susceptibility artifacts at tissue boundaries (bone, lungs),
more pronounced at higher field imaging, and a source of
pitfalls in image interpretation.61 For example, sclerotic
metastases may alter image contrast on DWI, and blood
products and metal debris may give erroneous ADC values
in a postoperative setting.51 Finally, due to the technical
factors and lack of standardization, quantitative measure-
ments have limited reproducibility, and there is frequently
substantial overlap between cut-off values, hindering their
universal applicability (►Figs. 6 and 7). Finally, the added
value of DWI in comparison with conventional morphologi-
cal imaging is yet to be determined.

Marrow Perfusion: Dynamic Contrast-
enhanced MRI

Technique
DCE-MRI consists of assessing tissue perfusion through serial
acquisitions of images before and after a bolus of intravenous
contrast injection and the assessment of the variation of MR
signal intensity of the tissues of interest, both qualitatively
and quantitatively.

The nonmodeled quantitative and visual assessments in
DCE-MRI are easily implemented in clinical settings and not
computationally demanding. Images can be visually ana-
lyzed and regions of interest drawn on an area of interest
to obtain DCE time-intensity curves. Qualitative assessment
of contrast uptake, wash-in, and washout rates is the most
widespread method in clinical routine.

The quantitative analysis is based on the Tofts bicompart-
mental model.62,63 This quantitative analysis involves the
conversion of signal intensity to gadolinium concentration
and fitting of the data into a tissue model, and yields four
main parameters (volume transfer constant [Ktrans], rate
constant [Kep], fractional plasma volume [Vp,], and extravas-
cular space [Ve]) that reflect the gadolinium distribution
between the intravascular and the extravascular-extracellu-
lar compartment.42 Quantitative DCE-MRI has been mainly
used in a research setting to gain knowledge of the patho-
physiology of various diseases such as osteoporosis, osteo-
necrosis, and osteoarthritis.25,64,65

Normal Bone Marrow
Normal bone marrow shows variable enhancement after
intravenous contrast injection (mean: 20%; range: 3–59%).66

However, vascularity depends on marrow composition, and
red marrow is highly vascularized compared with yellow
marrow.16,67,68 Therefore, bone marrow perfusion on MRI
may vary depending on marrow composition, age, and sex,
with higher levels in women and decreasing levels with
age.66,69–71 The interpretation of DCE-MRI studies should be
performed considering these physiologic differences.

Clinical Applications

Lesion Characterization and Evaluation of Vertebral
Compression Fractures
Among the potential applications of DCE-MRI, it was sug-
gested that the Vp, a quantitative parameter extracted from
DCE-MRI, could differentiate benign from malignant VCFs
with a sensitivity of 93% but a specificity of 78%.72 Pathologic
VCFs were shown to have higher perfusion parameters (Vp,
Ktrans, wash-in slope, peak enhancement, and area under the
curve) compared with benign fractures.73 However, the

Fig. 6 A 12-year-old girl with painless progressive kyphosis. Sagittal (a) diffusion-weighted image (DWI) (b¼ 500) and (b) corresponding
apparent diffusion coefficient (ADC) map, (c) transverse contrast-enhanced fat-suppressed T1-weighted images, and (d) coronal T2-weighted
images show abnormal restricted diffusion of T12 and L1 vertebrae (asterisks) with epidural extension (b, arrow) and paravertebral peripherally
enhancing collections with low T2 rim (c, d, arrows). The patient was found to have tuberculous spondylitis. The usefulness of ADC values in
differentiating malignancy from infection is not consistent (courtesy of Joseph El-Khalil, MD, Beyrouth, Lebanon).
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added value of DCE-MRI in cases where morphological
analysis is inconclusive remains to be determined.

Diabetic Foot
DCE-MRI could be a useful adjunct to standardMRI protocols
to help differentiate acute neuroarthropathy from pedal
osteomyelitis. In one study, the Ktrans, Kep, and Ve values of
bones with osteomyelitis were higher than those of acute
neuropathic arthropathy.74 In another study, the Ktrans

allowed a reliable differentiation between both entities but
was inferior to the visual assessment of fluorodeoxyglucose
positron emission tomography (FDG-PET)/CT.47 DCE-MRI
has also been used to predict and monitor treatment re-
sponse in acute Charcot’s foot.75

Spinal Infections
Quantitative analysis of DCE-MRIwas shown to contribute to
the early diagnosis of brucella spondylitis76 and the differ-
ential diagnosis between spinal metastatic tumor, brucella
spondylitis, and spinal tuberculosis.76,77 Tuberculous verte-
bral lesions, especially in the early phases, may mimic
malignant lesions on conventional MRI sequences but also
on DWI (►Figs. 6 and 7). DCE-MRI has been used to assess
spinal tuberculosis. On quantitative analysis, the presence of
washout or a Kep � 1.17min�1 was shown to be highly
predictive of malignancy.78,79

Pitfalls
Significant variations in imaging protocols, scanner types,
and postprocessing methods hamper the universal applica-

bility and reproducibility of quantitative DCE-MRI param-
eters. For example, quantitative parameters may vary
depending on the acquisition protocols (amount of contrast
agent, temporal resolution, and scan duration).80

Whole-body MR Imaging for Non-neoplastic
Marrow Conditions: Applications and
Challenges

Whole-body MRI has emerged as a useful tool in oncologic
imaging (e.g., for staging, assessing disease burden, and
treatment response). MRI acquisition protocols vary, but
experts agree it should include T1-weighted, STIR, and
DWI sequences, with recent trends toward using T2-weight-
ed Dixon images to replace T1-weighted and STIR.8,9,41,81

Non-oncologic applications of whole-body MRI include
the investigation of fever of unknown origin (FUO) in chil-
dren,82,83 the diagnosis and assessment of disease activity
and treatment response in chronic recurrent multifocal
osteomyelitis,84–89 and synovitis, acne, pustulosis, hyperos-
tosis, osteitis (SAPHO).90 Whole-body MRI has also been
used to detect clinically occult inflammatory lesions and to
provide a simultaneous evaluation of the axial and appen-
dicular skeleton in inflammatory arthritis.91–98 Other appli-
cations include the evaluation of the disease burden in
Gaucher’s disease99 and multifocal osteonecrosis.100

However, the incorporation of whole-body MRI into the
routine clinical workflow remains challenging because of
examination duration, the need for an experienced reader,
and, in many countries, potential billing difficulties.41 The

Fig. 7 A 53-year-old man with fever and back pain and suspicion of spondylodiskitis on computed tomography (CT) (not shown). Sagittal (a) T1-
weighted, (b) fat-suppressed T2-weighted, (c) contrast-enhanced T1-weighted, (d) diffusion-weighted image (DWI) (b¼ 500), and (e)
corresponding apparent diffusion coefficient (ADC) map showmarrow replacement of T2 and L1 vertebral bodies, restricted DWI (asterisks) with
an ADC value of 0.58 �10�3 mm2/s, a peripherally enhancing prevertebral collection with restricted DWI, causing scalloping of the anterior
vertebral wall (thin arrows) and elevation without disruption of the anterior longitudinal ligament (a, arrowhead). The differential diagnosis
included tuberculous spondylitis and lymphoma. The patient was diagnosed with Hodgkin’s lymphoma on biopsy and positron emission
tomography/computed tomography (not shown). There is an overlap of ADC values between malignant and infectious lesions, making the
differentiation difficult based on quantitative imaging alone.
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use of gradient-echo techniques, FSE T2-weighted Dixon
sequences, and acceleration techniques, such as simulta-
neous multislice sequences and potentially reconstruction
algorithms based on artificial intelligence, may contribute to
decreasing acquisition time and allow wider use.101,102

Other Techniques of Marrow Imaging Using
MRI
1H-MRS spectroscopy provides concentrations of specific
metabolites, and its main application in marrow imaging is
the quantification of fat.36,103 In clinical research, it has been
investigated in a few applications related to osteoporosis,
fracture risk assessment, andresponse to treatment inpatients
with metabolic diseases like anorexia nervosa,104,105 Gauch-
er’s disease,106 rheumatoid arthritis,107multiple myeloma,108

or Charcot’s neuroarthropathy.109 However, in clinical prac-
tice, its use has significantly decreased in favor of CSI.110

Intravoxel incoherent motion MRI uses low b-value DWI
to acquire perfusion maps without the need for contrast
injection. This technique has been applied in neuroradiology
and oncology, and it may be used to assess muscle perfusion.
However, its usefulness in marrow imaging in clinical prac-
tice remains to be validated by further studies.111,112

Spectral Computed Tomography Imaging

Technique
Spectral CT is based on the principle that the attenuation of
tissues depends not only on their density but also on their
atomic number Z, as well as on the energy of the photon
beam.113 Using these properties, spectral CT may be used to
characterize and quantify certain tissue components. As an
example, mineralized tissues of bones can be subtracted
from the image and VNCa images may be obtained, allowing
the detection of bone marrow lesions.114,115

The most commonly available subset of spectral CT is
DECT, in which two X-ray energy spectra are used. More
recently, photon counting detectors were introduced. This
new technology allows multi-energy imaging, a direct count
of individual incoming photons, and a measure of their
energy level.116,117 Photon counting detectors can provide
higher spatial resolution, dose reduction, and better material
differentiation, and they are less prone to beam-hardening
artifacts.116–118 The following sections summarize some
applications of DECT for bone marrow imaging, keeping in
mind that photon counting CT has the potential to improve
the diagnostic performance of DECT for these applications,
although this is yet to be validated.

Normal Bone Marrow
DECT may be used to assess bone marrow composition.119

However, to the best of our knowledge, no consensus has
been reached on the definition of normal bone marrow on
DECT. In fact, image analysis is based on a comparison of
areas of interest with the presumed normal bone marrow
within the FOV and is influenced by postprocessing algo-
rithms and thresholding parameters.

Clinical Applications

Detection of Bone Marrow Edema and Marrow-replacing
Lesions
The performance of conventional CT to detect bone marrow
lesions that do not alter the mineralized bone is poor. VNCa
reconstructions have the potential to improve the detection
of BME-like lesions, as well as bone marrow–replacing
lesions. For sake of simplicity, we use “BME” to refer to
BME-like lesions in the rest of this section.

The DECT depiction of BME most commonly uses two
material decomposition algorithms (calcium/water) based
on different attenuation profiles at different energies. VNCa
images can hereby be generated, allowing the assessment of
bone marrow attenuation. VNCa images are often inter-
preted as color maps coding the attenuation of bone marrow
and may be fused with native bone images for better ana-
tomical correlations.120

Bone marrow neoplastic lesions, unless lytic or sclerotic,
are difficult to detect on conventional CT. VNCa images were
shown potentially useful for the detection of bone marrow
lesions in multiple myeloma121 and metastases of solid
tumors.122

Moreover, studies have used DECT to differentiate malig-
nant from nonmalignant tumors,123 osteoblastic metastases
from bone islands,124 osteolytic metastases from Schmorl’s
nodes,125 and infections.126However, MRI so far remains the
keystone morphological modality for imaging bone marrow,
and more validation studies of DECT are required.

Vertebral Compression Fractures
DECT allows the detection of BME and the differentiation of
acute from chronic VCFs.120,127–131 In a recent systematic
review and meta-analysis, DECT had 89% sensitivity and 96%
specificity to diagnose BME related to a recent VCF, possibly
obviating the need for a confirmatory MRI in the emergency
setting.132 However, CT with a single-source technique had
poorer specificity (78%) compared with those with a dual-
source technique (98%), the diagnostic accuracy for the
detection of BME depended on the reader’s experience,
and the absence of BME did not confidently rule out the
diagnosis of acute VCF if the clinical suspicionwas high.132Of
importance, the sensitivity of DECT in the diagnosis of acute
but morphologically occult VCFs remains to be addressed.132

Trauma of the Appendicular Skeleton
In clinical practice, CT is used in traumatic contexts with
noncontributory radiographs and clinical suspicion of frac-
ture. However, the lack of cortical discontinuity or trabecular
displacement can make the diagnosis challenging. MRI is
considered the gold standard for detecting BME in occult
fractures; however, it is not widely available in the emer-
gency context.

VNCa images may improve visualization of occult frac-
tures and improve the reliability and diagnostic confidence
among less experienced readers.120,133 In a recent meta-
analysis, DECT had a pooled sensitivity and specificity of 86%
and 93%, respectively.134 DECT reduces the reading time
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while analyzing lower extremity CTs for fractures when the
radiologist is presentedwith BMEmaps, and time reductions
were more evident for unskilled readers.135 DECT could
potentially function as a one-stop shop and obviate the
need for confirmatory MRI.

Low-energy Trauma of Older Adults
DECT increases the sensitivity to detect radiographically
occult fractures of the pelvic girdle and proximal femurs in
older adults, whether related to low-energy trauma or bone
insufficiency.136–140 Some authors have suggested that a
quantitative analysis of VNCa images might help differenti-
ate pathologic from nonpathologic fractures.141 However,
this finding should be confirmed in larger studies.

Rheumatologic Disorders
DECT can detect inflammatory lesions in sacroiliitis with
relatively high sensitivities (between 81% and 93%) and
specificities (91–94%).142,143 The incidental detection of
periarticular BME may help in the early diagnosis of rheu-
matologic disorders.120

Miscellaneous Marrow Conditions
DECT can detect nontraumatic BME of the hip and knee with
a sensitivity of 88.4% and specificity of 96.1%.144 If MRI is
contraindicated, DECT could help depict BME associatedwith
cortical erosions confirming osteomyelitis. This possibility
should be validated in further studies.120

Pitfalls and Limitations
Validation of established diagnostic thresholds for bone
marrow alterations is difficult because of the variety of
acquisition and postprocessing methods132,145,146

(►Fig. 8). The ability of the material decomposition in
DECT increases with lower spectral overlap.147 Therefore, a
wider separation between the energies of the two tubes
could improve DECT sensitivity to detect BME.148

As a general recommendation, VNCa maps should not be
assessed in isolation, and the reader must be aware of
possible pitfalls. Any process that locally increases the atten-
uation of the bone marrow to a density higher than fat could
show false-positive results. Red marrow hyperplasia can be
misinterpreted as BME (i.e., in the proximal femurs and flat
bones as vertebrae). Hence careful comparison with the
contralateral side and adjacent structures is recommended
when looking for an occult fracture.

Bone sclerosis can cause both false-positive findings due
to locally increased Hounsfield unit levels, and false-nega-
tive findings as an extensive subtraction process can hide
BME detection. In the presence of a splint or cast, BME may
not show even in displaced fractures, probably due to a
reduction in the attenuation differences caused by the
dense material around the limb.120 In general, VNCa maps
should always be assessed together with conventional
images to avoid pitfalls.

Additional limitations related to technical challenges,
standardization of reconstruction, and decomposition algo-
rithms, aswell aswindow level andwidth settings, remain to
be addressed before thewidespread implementation of DECT
in marrow imaging.

Nuclear Medicine and Molecular Imaging

Technique
Nuclear imaging relies on the intravenous injection of
radiopharmaceuticals to assess the distribution of hemato-
poietic or reticuloendothelial cells. Imaging of the hemato-
poietic component can be achieved by white blood cell
(WBC) scintigraphy, by injecting the patient’s WBCs after
they have been radiolabeled in vitro with technetium (Tc)-
99m (Tc) or indium-111, or by injecting Tc-99m-labeled
mouse anti-granulocytes monoclonal antibodies or anti-
body fragments. The reticuloendothelial cells may be im-
aged thanks to radiolabeled colloids (Tc-99m-sulfur colloid

Fig. 8 A 46-year-old man with left knee pain. (a) Coronal intermediate-weighted fat-suppressed image shows edema-like signal intensity of the
lateral femoral condyle and the tibial eminence (asterisks). Two types of coronal color-coded dual-energy computed tomography reconstruc-
tions are displayed: (b) virtual non-calcium and (c) virtual non-hydroxyapatite, showing the influence of postprocessing. There are false positives
(arrows) and false negatives (arrowhead) (b).
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and Tc-99m-nanocolloid) that are phagocytosed by the
reticuloendothelial system in bone marrow, spleen, and
liver. Bone scintigraphy with intravenous injection of Tc-
99m-labeled diphosphonates allows imaging of bone oste-
oblastic activity.

Furthermore, the metabolic activity of bone marrow can
be probed by 18F-Fluoro-deoxyglucose positron emission
tomography (18FDG PET).

Osteomyelitis
WBC scintigraphy has high accuracy in evaluating infections
involving the appendicular skeleton. However, its diagnostic
performance for the detection of infection in the axial
skeleton is hampered by intense physiologic bone marrow
uptake.

18FDG PET/CT may be used in patients in whom MRI is
contraindicated to detect sites of infection in the axial
skeleton (i.e., spondylodiscitis). Focal FDG uptake in the
diabetic foot may be a useful sign to differentiate osteomye-
litis from Charcot’s neuro-osteoarthropathy when MRI is
inconclusive.47 In a 2017 meta-analysis, WBC scintigraphy
and FDG-PET had a comparable sensitivity to MRI but a
higher specificity to diagnose pedal osteomyelitis.149 In
addition, WBC scintigraphy has high diagnostic accuracy to
evaluate fracture-related infections150 (►Fig. 9).

WBC imaging is also a valuable tool to assess peripros-
thetic infections. Bone scintigraphy is highly sensitive but
not specific for septic loosening, whereas WBC scintigraphy
has high sensitivity and specificity for infection.151–153 In
practice, the absence of periprosthetic uptake on bone scan
practically rules out infection, whereas an increased peri-
prosthetic uptake should be complemented by WBC scin-
tigraphy, with or without a colloid scan.153

In cases of FUO, FDGPET has higher diagnostic accuracy
thanWBC scintigraphy to detect the infectious site, although
the latter is more specific.152,154,155 A new technique con-
sisting of radiolabelingWBCwith FDGmight replace Tc-99m
WBC in this setting because it is more specific than
FDG-PET/CT and more sensitive than WBC scintigraphy.156

Vertebral Compression Fractures and Occult Fractures
Bone scintigraphy can depict VCFs because it is a very
sensitive method for detecting active bone remodeling.157

In patients with MRI contraindications and multiple verte-
bral fractures, it may help guide therapy by pointing out the
most recent fracture. Bone scintigraphy is also an excellent
imaging alternative to MRI in patients with suspicion of
occult fractures.158

Focal Marrow Hypermetabolism on FDG-PET/CT
Normal bone marrow metabolism is variable and declines
with age.159 Diffuse increase in bone marrow metabolism
can occur in hematologic malignancies but is frequently
observed in non-neoplastic conditions resulting in marrow
stimulation such as sepsis, rebound hematopoiesis after
chemotherapy, or following the administration of hemato-
poietic growth factors.160,161 A focal FDG uptake may be due
to infection or focal medullary hyperplasia that may mimic
metastatic lesions in an oncologic setting.19 In cases where
the characterization of a single uptake is crucial for staging
(i.e., no other metastases), MRI with CSI may be useful
(►Fig. 1).

Miscellaneous Applications
WBC and, to a lower degree, colloid scintigraphy can be used
for the diagnosis of extramedullary hematopoiesis.162 In
addition, WBC scintigraphy can also be used to map bone
marrow in cancer patients with impaired bone marrow
function to help predict the effect of therapies such as
external radiotherapy or metabolic radiotherapy on hema-
topoiesis163 (►Fig. 10).

Limitations and Pitfalls
Nuclear imaging techniques present some general limita-
tions including the need for a specific technical platform
(WBC scintigraphy), the radiation dose, and cost-related
issues.

Pitfalls exist and vary according to the radiotracer used.
An extensive review of these pitfalls is beyond the scope of

Fig. 9 A 54-year-old man with a history of previous right tibial fracture and suspicion of osteomyelitis. Anterior planar images were acquired at
(a) 4 hours and (b) 24 hours after intravenous injection of mouse monoclonal 99m-technetium-antigranulocyte antibodies showing focal
accumulation of leukocytes in the right tibial diaphysis (arrow). (c) Coronal fused single-photon emission computed tomography/computed
tomography images confirmed that the uptake corresponds to the site of the previous tibial fracture (arrow).
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this article, but a good understanding of the physiology and
distribution of each radiotracer is essential to avoid several of
these pitfalls, including false-positive findings.

Conclusion

Over the past decades, there has been a growing interst in
novel imaging techniques for the assessment of bone mar-
row, both qualitatively and quantitatively. Although many of
these methods have been successfully used in the research
setting, their incorporation in clinical practice has been
limited. Many challenges remain to be addressed, including
availability, cross-vendor and cross-institutional reproduc-
ibility, issues related to reimbursement, as well as examina-
tion and processing time. Once these challenges are

overcome and techniques are standardized, further studies
will be needed to assess the added value of these methods in
relation to conventional protocols.
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