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Abstract Herein, we report the novel strategy for the synthesis of 4-
enamino-5-phenyl-2,3-dihydroisothiazole 1-oxides (in other words -
phenyl -enamino -sultims) based on the CSIC reaction. Particularly,
readily available -amino nitriles (the Strecker products) reacted with
benzyl sulfinyl chloride to give the corresponding sulfinamides, which
upon treatment with excess of LiHMDS converted into the target -
phenyl -enamino -sultims. The method works well and tolerates
strained 3- and 4-membered spirocyclic substituents. A preliminary in
silico study indicated that the -sultim scaffold can be considered a
promising pharmacophore template.
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The application of novel and uncommon structural mo-

tifs in lead-oriented synthesis1 opens up new avenues for

the development of innovative pharmaceuticals. The

unique structural frameworks allow the creation of new

chemical entities (NCE) for tackling previously intractable

diseases and drug-resistant pathogens. In this regard, sulfi-

namides2 and their cyclic congeners, regarded as a separate

class, sultims,3 can be considered as chiral bioisosteres of

carboxamides and lactams, respectively.4

Despite -sultims having been known since the early

1920s,5 they have triggered attention as novel pharmaco-

logical templates only in the last decades. This is especially

indicative for (en)amino derivatives. The antibacterial can-

didate6 and gastric secretion inhibitors7 may serve as exam-

ples (Figure 1).

Figure 1  Biologically active -(en)amino -sultims

Surprisingly, only two approaches to the construction of

-enamino -sultim framework have been reported to date.

The first one is underlain on the base-mediated rearrange-

ment of penicillin sulfoxides (Scheme 1, A).8a,b However,

this strategy appeared synthetically useless since it provid-

ed the complex mixture of product so that the desired sul-

tims were isolated in low yields through the tedious purifi-

cation procedures. The second approach looked more reli-

able in that it implied the oxidation of the appropriately

substituted isothiazolones with mCPBA (Scheme 1, B).8

With that, neither general procedures for both approaches

nor isolated yields of pure products have been provided.
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The present work is devoted to the synthesis of -phenyl -

enamino -sultims through the LiHMDS-mediated cycliza-

tion of N-sulfinylated -amino nitriles (Scheme 1, C).

While syntheses for sultams (cyclic sulfonamides) are

relatively common,9 sultims still have remained an under-

represented class that can be accessed through the quite

limited set of synthetic strategies.3,10 Recently we have de-

scribed the synthesis of differently substituted/functional-

ized -enamino -sultams11 through the carbanion-mediat-

ed sulfonate (or sulfonamide) intermolecular coupling and

intramolecular cyclization (CSIC) reaction.12 Inspired by

this, we assumed that the logic inherent in the above syn-

thetic strategy can be extended to access similarly substi-

tuted/functionalized -enamino -sultims. In turn, the di-

rect precursors for the sulfa-Thorpe cyclization can be pre-

pared by the simple sulfinylation of readily available N-

monosubstituted -amino nitriles, the Strecker products

(Scheme 2).

Scheme 2  Retrosynthetic disconnection for the assembly of -phenyl 
-enamino -sultims

We initiated our study with the synthesis of the model

sulfinylation agent – benzyl sulfinyl chloride (3) adopting

the literature method on the oxidation of 1,2-dibenzyldi-

sulfane (4) with SOCl2 (Scheme 3).13,14 It should be taken

into account that the residual amount of both SO2Cl2 and

SOCl2 led to a significant loss of yield on the next sulfinyla-

tion step. Therefore, it is quite important to rid sulfinyl

chloride 3 of these impurities as thoroughly as possible.

Scheme 3  Synthesis of benzyl sulfinyl chloride (3)

With the freshly prepared benzyl sulfinyl chloride (3) in

hand, a set of -amino nitriles 5 was involved in the sulfi-

nylation step, and the corresponding linear sulfinamides 2

were isolated in fair to good yields (Table 1).15,16 It should be

noted that the crude product can be used in the next step so

that up to 20% of impurities are permissible. The overall

yields of the target -sultims (starting from 5a–c) were

comparable to those when purified precursors 2a–e were

involved in the final cyclization step.

Next, we set out to optimize the reaction conditions for

the cyclization step. Initially, we faced synthetically unac-

ceptable yields (not exceeding 10%) when using slight ex-

cess (up to 15%) of LiHMDS. After extensive exploration,

conditions utilizing 4.5 equivalents of LiHMDS resulted in a

dramatic improvement in the yield of the target -phenyl

-enamino -sultims 1 (Table 1). Presumably, this arises

from the zwitterionic form of the S=O double bond, which

forms a 1:1 complex with LiHDMS, in this way precluding

the abstraction of the proton from the (S=O)CH2Ph frag-

ment. Therefore, extra equivalents of the base are required

to move the equilibrium reaction towards the formation of

the carbanion. It should be also taken into account that a

stoichiometric amount of LiHMDS remains coordinated

with the sulfinyl group even after the cyclization reaction

has taken place (Scheme 4).

Scheme 4  Coordination of LiHDMS with the sulfinyl group of the pre-
cursor 2, intermediate carbanion, and the target -enamino -sultim 1

These optimized reaction conditions allowed us to con-

vert sulfinamide precursors 2 into the desired -phenyl -

enamino -sultims 1 with synthetically valuable yields (Ta-

ble 1).17,18 It transpired that the nature of the substituent in

the -position of amino nitriles 5 had some impact on the

yield of both the linear sulfinamides 2 and target products.

Thus, sultims 1b,c possessing strained 3- and 4-membered

spirocyclic substituents were isolated in lower yields than

their unstrained counterparts 1a,d,e (Table 1).

Scheme 1  Synthetic approaches toward -enamino -sultims

N

S

O
CO2R2

O
PGHN

R1
N

S O

PGHN

O

CO2R2

Et3N, AcMe, rt, 72 h or

R1 = H, Br; R2 = CH2CCl3; PG = BnCO, (MeO)2PO

DBN, CH2Cl2, 0 °C, 10 min

A)

B)

C) this work

R

R

CN

N
S

Ph

O N
SR

R
O

PhH2N

LiHMDS, THF, –60 °C to 0 °C
2. quenching

N
S

R

PGHN

O N
S

R

O

PGHN

O

CO2Me CO2CH2CCl3

PG = BnCO, Cbz, (MeO)2PO; R =

mCPBA

12

R2

R1

CN

N
S

R3/FG

ON
SR2

R1
O

R3/FGH2N
R2

R1

CN

NH
Cl

S

R3/FG

O

+

PhS

O

ClPh S
S Ph

SO2Cl2, AcOH, CH2Cl2

95% crude yield
34

–40 °C to 40 °C

R

R

CN

N
S

Ph

O

N(TMS)2R

R

CN

N
S

Ph

O Li

[2•LiHMDS]2

LiHMDS (1 equiv)

N(TMS)2R

R

CN

N
S

Ph

O Li

Li

[2•LiHMDS] Li

N
SR

R O

PhHN

Li

N(TMS)2 CSIC
reaction

LiHMDS (excess)

Li

[1•LiHMDS] Li
Synlett 2024, 35, A–E



C

Y. O. Chuchvera et al. LetterSynlett
The presence of the sulfur(IV) atom endowed precur-

sors 2 and -enamino -sultims 1 with chirality and caused

a chemical anisotropy shift of the signals of the (spiro)alkyl

substituent in NMR spectra (attributable to deshielding ef-

fect by S=O and to shielding one by the lone pair). For in-

stance, two methyl groups in the 3rd position of sultim 1a

exhibited a moderate chemical anisotropy shift both in 1H

(Δ = 0.22 ppm) and 13C (Δ = 2.9 ppm) NMR spectra.

The structure of -enamino -sultim 1c was established

unambiguously by the X-ray crystal structure analysis (Fig-

ure 2).19

To further demonstrate the potential utility of -enami-

no -sultim scaffold we estimated their probable biological

activity resorting to in silico methods. To accomplish this,

molecular docking of sultim 1c into the aldehyde dehydro-

genase ALDH1A1 (pdb id: 5L2M) active site was performed.

The docking grid was established centered on the co-crys-

tallized ligand (BUC11).20 The obtained results showed that

1c has predicted affinity to ALDH1A1 (Figure 3). The recent

studies showed that ALDH1A1 inhibitors acted as the tumor

suppressors in certain cancers and therefore ALDH1A1-tar-

geted therapy has become widespread in cancer treat-

ment.21 Apart from that, ALDH1A1 downregulation in reti-

Table 1  Synthesis of -Phenyl -Enamino -Sultims 1

Entry Starting -amino nitrile 5 N-sulfinylated -amino nitrile 2 Yield (%) -Enamino -sultim 1 Yield (%)

1 70 80

2 49 52

3 55 65

4 53 73

5 62 84
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Figure 2  Molecular structure of -phenyl -enamino -sultim 1c ac-
cording to results of X-ray crystal-structure analysis. Thermal ellipsoids 
are shown at the 50% probability level.
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nal Müller glia could contribute to the inner blood retinal

barrier (iBRB) breakdown during diabetic retinopathy, the

main cause of vision loss in this disease.22

In conclusion, the CSIC reaction strategy appeared as an

appropriate and, apparently, the most reliable tool for the

construction of -enamino -sultim framework. The meth-

od worked well and tolerated strained 3- and 4-membered

spirocyclic substituents. Having developed the synthesis of

-phenyl -enamino -sultims, we would extend this pro-

tocol to other substituted and -functionalized sultims.

Owing to low molecular weight, sp3-enrichment, and con-

formational restriction, -enamino -sultims meet the cri-

teria for lead-oriented synthesis.1a Preliminary in silico

study indicated that -sultim scaffold can be considered a

promising template and therefore might be useful for early

drug discovery programs.
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