Imaging Approach to Portal Hypertension

Antony Augustine1, Reetu John1, Betty Simon1, Anuradha Chandramohan1, Shyamkumar N. Keshava1, Anu Eapen1

1 Department of Radiodiagnosis, Christian Medical College, Vellore, India

Address for correspondence Anu Eapen, DMRD, DNB, Department of Radiodiagnosis, Christian Medical College, Vellore 632004, India (e-mail: anuepn@yahoo.com).

Abstract

Increase in portal venous pressure (termed portal hypertension) is seen in a variety of liver diseases. Imaging tests are useful to detect portal hypertension and identify its cause. Noninvasive tests like abdominal ultrasound and Doppler studies are routinely done in clinical practice for this indication. Cross-sectional studies like computed tomography and magnetic resonance imaging are especially useful to delineate morphological abnormalities in the liver. Invasive tests like assessment of hepatic venous pressure gradient are done less frequently for specific indications. Distinctive imaging findings help differentiate the different causes of portal hypertension like cirrhosis and vascular liver disorders like noncirrhotic portal hypertension, extrahepatic portal venous obstruction, and Budd–Chiari syndrome. Radiological interventions are increasingly used to treat complications of portal hypertension like refractory ascites or refractory bleeding from gastroesophageal varices.

Keywords

► Portal hypertension
► Noncirrhotic portal hypertension
► Budd-Chiari syndrome
► Liver elastography

Definition

Portal hypertension (PHT) is defined as increase in portal venous pressure due to increase in vascular resistance or increased blood flow or both, resulting in hepatic venous pressure gradient (HVPG) >5 mm Hg.1 HVPG >10 mm Hg is associated with ascites, portosystemic collaterals, varices, and risk of hepatocellular carcinoma (HCC) and HVPG >12 mm Hg, with increased risk of variceal bleed.1

Etiology of Portal Hypertension

The etiology of PHT can be classified according to the anatomical location of abnormality into prehepatic, intrahepatic, and posthepatic causes. Intrahepatic causes are further classified into presinusoidal, sinusoidal, and post-sinusoidal causes. Important causes of PHT are summarized in ►Table 1.1

Intrahepatic Causes

Cirrhosis

Cirrhosis is advanced stage of liver disease, with histological fibrosis, necrosis, inflammation, and regenerative nodules (RNs) resulting in altered liver morphology.2 Imaging findings in cirrhosis include distinct hepatic and extrhepatic characteristics.3 Hepatic abnormalities include morphological changes and a gamut of focal liver lesions.

Ultrasound and Doppler

Ultrasound (US), which is often the initial imaging modality, shows coarse echotexture, small-sized liver with irregular nodular surface (►Fig. 1A), blunt edge, and volume redistribution. Typically, caudate (►Fig. 1B) and lateral liver segments undergo hypertrophy, while the medial segment and right lobe undergo atrophy; however, any combination can occur. A micronodular liver surface caused by small nodules <3 mm is common with alcoholic liver disease. A macronodular liver
Table 1 Causes of portal hypertension

<table>
<thead>
<tr>
<th>Prehepatic</th>
<th>Intrahepatic</th>
<th>Posthepatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presinusoidal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrahepatic portal vein thrombosis</td>
<td>Schistosomiasis</td>
<td>Budd–Chiari syndrome</td>
</tr>
<tr>
<td>Extrahepinal obstruction of the portal vein</td>
<td>Primary biliary cirrhosis</td>
<td>Congenital webs</td>
</tr>
<tr>
<td>(neoplasia/lymph nodes/other causes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splanchnic arteriovenous fistula: congenital</td>
<td>Noncirrhotic portal fibrosis (NCPF)</td>
<td>Right heart failure</td>
</tr>
<tr>
<td>Splenic vein thrombosis</td>
<td>Cystic fibrosis</td>
<td>Constrictive pericarditis</td>
</tr>
<tr>
<td>Congenital portal vein atresia/stenosis</td>
<td>Cirrhosis</td>
<td>IVC neoplasm</td>
</tr>
<tr>
<td>Sinusoidal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodular regenerative hyperplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltrative disorders (lymphoproliferative/myeloproliferative)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital hepatic fibrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postsinusoidal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veno-occlusive disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graft vs. host disease (GVHD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs/toxins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Ultrasound of the liver in different patients with cirrhosis. (A) High-resolution image showing nodular surface (arrow) in the left lobe of liver. (B) Volume redistribution in the form of caudate lobe hypertrophy (arrow). (C) Color Doppler showing decreased portal vein velocity of 13 cm/s suggestive of portal hypertension. (D) Multiple echogenic foci in the spleen (arrow) representing Gamma–Gandy bodies.
surface is more frequent with viral hepatitis.4 Extrahepatic manifestations on Doppler include features of PHT like enlarged portal vein diameter >12 mm, decreased portal vein velocity of <16 cm/s (\textcolor{red}{11} normal velocity is between 20 and 40 cm/s),5 hepatofugal flow, enlarged and tortuous hepatic artery,4 splenomegaly, and portosystemic collaterals. Portal vein thrombosis can occur in cirrhosis (prevalence: 0.6–15%).6

\textbf{Elastography} measures the stiffness of tissue and is able to detect different stages of liver fibrosis and can also predict PHT.7 US elastography techniques include FibroScan and acoustic radiation force impulse (ARFI) elastography.8 FibroScan is a one-dimensional transient elastography technique where shear waves are generated by a body-surface-controlled vibration, whereas ARFI elastography techniques are integrated into conventional US systems and shear waves are generated by the push pulse of a focused US beam. ARFI has few advantages over FibroScan.9 There is less operator dependency in ARFI, as there is no need for external compression by the operator. ARFI being integrated to the US system also has significantly lower unsuccessful measurements and is less sensitive to high body mass index and ascites. The liver stiffness measurements (LSM) with US elastography techniques are expressed in meter per second (m/s) or in kilopascal (kPa). Studies comparing fibrosis staging using ARFI and FibroScan have shown that the accuracy in fibrosis staging using ARFI is similar or better than that of FibroScan.8,10–12 The update to the Society of Radiologists in Ultrasound (SRU) consensus suggests using a “rule of four” (5, 9, 13, and 17 kPa) for fibrosis staging with ARFI-based techniques in patients with chronic viral hepatitis or nonalcholic fatty liver disease.8 Table 2 summarizes these cutoff value recommendations. ARFI is also useful for the follow-up of patients with chronic hepatitis B virus (HBV) infection. Long-term antiviral therapy reduces liver stiffness in chronic hepatitis B patients with significant fibrosis and cirrhosis.13

\textbf{Cross-sectional imaging} is better to depict morphological abnormalities. The altered caudate lobe-to-right lobe ratio (>0.65) with the lateral border determined by the main portal vein bifurcation is associated with cirrhosis.14 The modified caudate-to-right lobe ratio with the right portal vein as the lateral border and an abnormal value >0.9 (\textcolor{red}{15} Fig. 2) had higher accuracy of 74 versus 66\%.15 The right posterior hepatic notch sign (\textcolor{red}{16} Fig. 2A) indicates a sharp indentation along the right posteromedial surface of the liver between the hypertrophied caudate and the atrophic right posterior segment.16

The expanded gallbladder fossa sign specifies the enlarged pericholecystic space, bounded laterally by the right lobe, medially by the left lateral segment and an associated nonvisualized left medial segment.17 Widened porta hepatis anterior to the main portal vein at the hilum (\textcolor{red}{18} Fig. 3B) is also associated with cirrhosis. Heterogenous appearance of hepatic parenchyma due to fibrosis is evident on both computed tomography (CT) and magnetic resonance imaging (MRI); seen as areas of high signal intensity on T2-weighted [T2W] MR).4

MRI is the best imaging modality to evaluate cirrhosis-associated nodules. RNs are isointense on T1W and T2W sequences. They have predominant vascular supply from the portal vein and hence are indistinguishable on the arterial

\begin{table}
\begin{tabular}{|c|c|}
\hline
\textbf{Liver stiffness measurement} & \textbf{Recommendation} \\
\hline
≤ 5 kPa (1.3 m/s) & High probability of being normal \\
\hline
< 9 kPa (1.7 m/s) & In the absence of other known clinical signs, rules out compensated advanced chronic liver disease (CLD). If there are known clinical signs, may need further test for confirmation \\
\hline
9–13 kPa (1.7–2.1 m/s) & Suggestive of compensated advanced CLD but need further test for confirmation \\
\hline
> 13 kPa (2.1 m/s) & Rules in compensated advanced CLD \\
\hline
> 17 kPa (2.4 m/s) & Suggestive of clinically significant portal hypertension \\
\hline
\end{tabular}
\end{table}
phase and isointense on the other phases. These nodules can have T1W hyperintensity or may contain iron, resulting in low signal on both T1W and T2W imaging. Dysplastic nodules (DNs) can be low grade or high grade. Low-grade DNs are similar to RNs. High-grade DNs have arterialized flow and hence show early arterial phase enhancement, which becomes isointense on subsequent dynamic postcontrast sequences. These nodules can progress to HCCs with characteristic arterial phase enhancement and washout.

Other extrahepatic findings associated with cirrhosis include ascites, bowel wall thickening, diffuse edema, and gallbladder wall thickening. The foci of hemosiderin in the spleen (Gamma–Gandy bodies) are seen as echogenic the foci on US (►Fig. 1D) and T2 hypointense on MRI.

Noncirrhotic portal hypertension (NCPH)
NCPH, a presinusoidal, intrahepatic cause of PHT, accounts for 40% of cases with PHT in India. NCPH is characterized by sclerosis and obliteration of medium and small branches of the portal vein with periportal fibrosis resulting in PHT. But features of cirrhosis is typically absent. NCPH is called noncirrhotic portal fibrosis (NCPF) in India, idiopathic PHT (IPH) in Japan, and called hepatoportal sclerosis, idiopathic noncirrhotic intrahepatic PHT in the other parts of the world.

The exact etiology is unknown in up to 50% of patients with NCPF. Some known etiologies include umbilical sepsis, portal pyemia, and diarrheal and bacterial infections in infancy. Other causes of NCPF are prothrombotic states, autoimmune diseases, antiretroviral drug such as didanosine, chemotherapy, and radiation.

Clinical Features
NCPF typically presents in the third and fourth decades with no gender predilection. Symptoms include well-tolerated gastrointestinal (GI) bleed, abdominal mass from massive splenomegaly, and anemia from hypersplenism. Jaundice, ascites, and hepatic encephalopathy are uncommon. Liver function test is normal. There are no features of cirrhosis on liver biopsy. Portal vein thrombosis is more common in NCPF than in cirrhosis and is associated with poor prognosis.

The stages of NCPF is described in ▼Table 3.

Imaging Findings
Ultrasound and Doppler
Depending on the stage, liver is either normal, enlarged, or small and shrunken. Unlike cirrhosis, the liver surface is smooth in patients with NCPF. Portal venous axis and intrahepatic portal tracts have echogenic wall thickening often >3 mm from periportal fibrosis (►Fig. 4A). Periportal fibrosis can also have a layered appearance with alternative echogenicity and hypochochogenicity (►Fig. 4B). Massive splenomegaly and normal splenoportal axis are hallmarks of NCPF. Doppler examination can reveal portal vein thrombosis, a known complication of NCPF.

Elastography
Liver elastography helps differentiate cirrhosis from NCPF. In NCPF, liver stiffness is normal or near normal compared with increased stiffness in cirrhosis. On the other hand, splenic stiffness follows an opposite trend in these diseases.

Cross-Sectional Imaging
Contrast-enhanced CT (CECT) of the abdomen and pelvis allows better evaluation of the structural changes. Diffuse liver atrophy is seen from chronic decrease in the portal supply. But unlike cirrhosis, there is no volume...
redistribution. In the late stage, liver is shrunken, and its surface becomes nodular. However, segment IV volume is preserved until late in patients with NCPF (►Fig. 5).25,26

Chronic hypoperfusion is also seen as decreased enhancement of the liver periphery in the venous phase and compensatory increased enhancement in the arterial phase and hypertrophied hepatic artery.27 Obliterating portal venous disease can be seen as attenuation, abrupt cutoff, or amputation of small and medium-sized portal vein branches within the liver and this gives a “withered tree” appearance.23 Features of thrombosis of intra- and extrahepatic portal vein can be seen as filling defects, wall thickening, calcification (►Fig. 5), or portal cavernoma.23 CT will also show massive splenomegaly and splenic infarcts. Esophageal (85–90%) and anorectal varices (89%) are common in NCPF.

Gastric varices are less common (25%) but often present with GI bleed (►Fig. 6).21,23

Hemodynamic Studies
In late stages of NCPF, it is hard to differentiate NCPF from cirrhosis based only on imaging findings. In this setting, hemodynamic studies are useful. HVPG, intrahepatic pressure, and hepatic venous pressure are normal or near normal in NCPF.23

Magnetic Resonance Imaging
Periportal fibrosis is seen as hyperintense periportal cufing on T2W images.7 Chronic hemodynamic disturbances can lead to focal nodular hyperplasia like lesions in the liver. Dynamic contrast-enhanced MRI is useful in characterizing these lesions.26

Extrahepatic Portal Vein Obstruction
EHPVO refers to primary chronic thrombosis of extrahepatic portal vein with or without involvement of intrahepatic portal vein branches, splenic or superior mesenteric vein in the absence of liver disease or neoplasm, and resultant cavernous transformation of portal vein.23

Etiopathogenesis
EHPVO is a common cause of PHT among children in developing countries, accounting for ~54% of cases.28 The etiology is unknown in most cases. In children, it may be linked to neonatal umbilical sepsis or sequelae of the umbilical vein cannulation, whereas in adults, various prothrombotic states may predispose to this condition.23
Portal vein thrombosis results in the formation of portoportal collaterals as alternate pathways to shunt blood to the liver. These portoportal collaterals are pericholedochal (surrounding bile duct) plexus of Petren, epicholedochal (in the wall of the bile duct) plexus of Saint, and pericholecystic venous plexuses, which become dilated and tortuous. Splenomegaly and portosystemic collaterals develop as portal pressures increase further.

The etiopathogenesis of PHT is chiefly a result of increased vascular resistance. As the disease progresses, there is increased blood flow to the portal venous system resulting in worsening of elevated portal pressures and complications of PHT.

Abnormalities in the extrahepatic biliary tract occur in patients with EHPVO due to either extrinsic compression of the bile duct by collaterals or biliary stricture due to prolonged ischemia and is termed portal cavernoma cholangiopathy (PCC). The prevalence of clinically significant PCC ranges from 5 to 50% in patients with EHPVO, although morphological changes in the biliary tract can be seen in 70 to 100% of cases. It may be irreversible if there is fibrotic stricture or masslike cavernoma with predominant fibrotic soft tissue compressing the duct, whereas shunt surgery may decrease varices resulting in reversibility.

Imaging Findings

Ultrasound and Color Doppler

Ultrasonography (USG) is the initial modality to evaluate EHPVO. The portal vein is replaced by multiple tortuous venous channels at the porta and peripancreatic regions. The pericholecystic vessels also frequently enlarge and become tortuous. The liver surface is smooth and there is no volume redistribution; however, these can set in later in the disease course due to long-standing perfusion alterations. As PHT develops, there is moderate to gross splenomegaly and portosystemic collaterals (Fig. 7). Doppler demonstrates absent flow in the main portal vein and decreased monophasic flow toward the liver in the portoportal collaterals. The periportal collaterals can sometimes appear as masslike...
soft-tissue thickening with few vascular channels due to extensive fibrosis. Color Doppler detects color flow in vascular channels within this masslike thickening (►Fig. 8).

Intrahepatic biliary radicle dilatation in PCC can also be detected on USG.

Computed Tomography

CECT helps assess the extent of vascular involvement, clearly demonstrates the portosystemic circulation, and excludes other etiologies of PHT.

The liver morphology is largely preserved till later stages when perfusion abnormalities can result in volume redistribution and surface irregularity. Vasodilatation and increased splenic circulation also result in splanchic aneurysms.

CECT is valuable in preshunt evaluation to assess the extent of portal vein thrombosis and patency of the splenic vein, superior mesenteric vein, renal vein, and inferior vena cava (IVC) along with any anatomic variations or large collaterals if present. In postoperative patients, CECT also helps assess the shunt patency and obliteration of the collaterals.

Magnetic Resonance Cholangiopancreaticography

Magnetic resonance cholangiopancreatography (MRCP) is the imaging of choice to evaluate biliary changes in EHPVO. The findings include extrinsic indentation resulting in a wavy contour of the biliary duct, focal stricture with upstream dilatation, and sharp angulation of the bile duct (►Fig. 9). Cholelithiasis, choledocholithiasis, and hepatolithiasis can also occur. The stricture can be long segment (>2 cm long) or short segment (≤2 cm).

Based on morphology and etiopathogenesis, biliary abnormalities in EHPVO are classified into three types: varicoid type (due to percholedochal collaterals causing extrinsic compression), fibrotic type (stricture due to ischemia, inflammation with typical delayed enhancement), and mixed type (undulation and strictures with associated dilatation). A radiological classification based on MRCP by Llop et al suggests the likelihood of developing symptoms in PCC. Minimal irregularities are classified as grade 1 PCC, stenosis without dilatation as grade 2 PCC, and stenosis with dilatation (dilatation defined as intrahepatic duct measuring ≥4 mm and extrahepatic duct caliber measuring ≥7 mm).

Fig. 8 (A) Ultrasonography (USG) in a patient with extrahepatic portal vein obstruction (EHPVO) shows masslike soft-tissue thickening at the porta due to extensive fibrosis. (B) Color Doppler shows few vascular channels within the masslike soft-tissue thickening. (C) Contrast-enhanced computed tomography (CECT) axial section shows enhancement of small vascular channels in the masslike cavernoma at the porta.

Fig. 9 T2-weighted (T2W) axial image (A) in a patient with extrahepatic portal vein obstruction (EHPVO) and portal cavernoma cholangiopathy shows multiple tortuous vascular flow voids at the porta surrounding the biliary duct causing narrowing of lumen (block arrow). (B) Magnetic resonance cholangiopancreatography (MRCP) image shows short segments of narrowing in the extrahepatic bile duct and resultant bilobar symmetric intrahepatic bile duct (IHBRD, intrahepatic biliary radical dilatation).
as grade 3, with grade 3 PCC associated with higher risk of symptomatic disease.34

Budd–Chiari syndrome

Budd–Chiari syndrome (BCS) refers to disorders resulting from partial or complete hepatic venous outflow obstruction in the hepatic veins or IVC up to the cavoatrial junction. It occurs more commonly in young adults and in women35,36 and is an important posthepatic cause of PHT.

Etiopathogenesis

BCS is classified based on etiology into primary and secondary types. Primary BCS occurs due to primary endoluminal venous problems such as webs, thrombosis, and stenosis. Inherited hypercoagulable states such as protein C, protein S deficiency, antithrombin 3 deficiency, and acquired prothrombotic states like myeloproliferative disorders may predispose to BCS.37,38 Secondary BCS results from extrinsic compression of veins by abscesses and cysts, and infiltration by tumors like HCC, renal cell carcinoma, and others.38,39

The hepatic venous outflow obstruction leads to increased hepatic sinusoidal pressure and decreased portal perfusion. There is hepatic congestion, which can progress to ischemic injury, hepatocyte necrosis, fibrosis, and ultimately cirrhosis.35,39

Imaging

Imaging findings reflect the duration of BCS with varying changes in acute, subacute, and chronic stages.

Acute BCS

US and Doppler will show hepatomegaly, ascites, and enlarged caudate lobe, which may compress the IVC. An enlarged caudate vein (≥ 3 mm) may suggest BCS. Distended hepatic veins with hypoechoic thrombus may be seen, which evolves over time to echogenic thrombus with reduction in caliber of the vein. On Doppler, there may be loss of phasic variation of the waveform, absent flow, or reversed flow.38,39

In the presence of a web, there will be increase in flow velocity and color aliasing at the site of narrowing.39 Portal vein may show hepatofugal flow.38

Computed Tomography and Magnetic Resonance Imaging

The acute changes of increased sinusoidal pressure and hepatic congestion due to outflow obstruction cause hepatomegaly with patchy reduced enhancement in the peripheral portions of the liver on the early phase of CECT and MRI with relatively increased enhancement in the caudate lobe, which is enlarged37 (→ Fig. 10). Reversal of enhancement with increased enhancement in the peripheral portions of the liver and relative decreased enhancement in the caudate lobe on the venous phase is termed the “flip flop” phenomenon.

Subacute Budd–Chiari Syndrome

In the subacute stage, imaging will show volume distribution in the liver with multiple collaterals. These changes are also seen in chronic BCS from which it may be difficult to differentiate on imaging.

Chronic Budd–Chiari Syndrome

In chronic BCS, morphologic changes in the liver are those of chronic liver disease with volume redistribution (→ Fig. 11). The parenchymal edema seen in acute BCS is now replaced by fibrosis with delayed enhancement on CECT or MRI.35 Marked caudate lobe hypertrophy and multiple RNs are a feature of chronic BCS. RNs (0.5–4 cm in size) represent a hyperplastic response in parts of the liver with decreased portal perfusion, hyperarterialization, and preserved venous outflow. On CT, these nodules are hyperenhancing in the arterial phase with enhancement often persisting into the venous phase with no “washout.”36 On MRI, these nodules are hyperintense on T1W MRI and iso- to mildly hypointense on T2W MRI.

The collateral pathways that open up in chronic BCS include comma-shaped intrahepatic venovenous collaterals, intrahepatic subcapsular collaterals, left renal hemiazygos pathway inferior phrenic- pericardiophrenic collaterals, and

Fig. 10 Contrast-enhanced computed tomography (CECT) axial images of a patient with acute Budd–Chiari syndrome shows hypoenhancement of the peripheral portions of the liver with a relatively increased enhancement in the caudate lobe (arrow), which is enlarged. There is ascites and nonvisualized hepatic veins.
collaterals of the abdominal wall. The increased portal pressure in PHT redirects blood through alternate pathways into low-pressure systemic veins, leading to formation of an extensive network of portosystemic collateral vessels. These collaterals include dilated end organ veins called varices and dilated channels that connect the portal and systemic vascular beds called shunts. The common varices and shunts in PHT are listed in Table 4.

The collaterals can also be classified as tributary collaterals, developed collaterals, or bridging collaterals. Tributary collaterals are normal tributaries of the portal venous system in which flow reversal occurs and transforms into large shunts. They include the left gastric vein, short gastric vein, and superior and inferior mesenteric veins. Developed collaterals are reopened congenital connections that should have been closed if there was no PHT. They include recanalized paramesenteric vein, splenorenal, gastrorenal, and splenoretroperitoneal collaterals. Bridging collaterals occurs in EHPVO or splenic vein thrombosis to restore the hepatopetal flow. In EHPVO, bridging collaterals are the peribiliary venous collaterals forming a cavernoma (Figs. 12 and 13). In splenic vein occlusion, the bridging collaterals are the short gastric vein to the left gastric vein or the gastroepiploic vein to the superior mesenteric vein, both of which finally drain into the portal vein.

Table 4 Summary of common portosystemic collaterals

<table>
<thead>
<tr>
<th>Collaterals</th>
<th>Afferent</th>
<th>Efferent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal/parasophageal</td>
<td>Left gastric vein</td>
<td>Azygos–hemiazygos veins</td>
</tr>
<tr>
<td>Gastric/perigastric</td>
<td>Left gastric vein/short gastric and posterior gastric veins</td>
<td>Esophageal/parasophageal veins</td>
</tr>
<tr>
<td>Duodenal</td>
<td>Superior and inferior pancreaticoduodenal veins, cystic branches of the superior mesenteric veins, gastroduodenal vein, and pyloric vein</td>
<td>Veins of Retzius into the inferior vena cava (IVC)</td>
</tr>
<tr>
<td>Jejunoileal</td>
<td>Jejunal and ileal veins</td>
<td>Abdominal wall veins/veins of Retzius</td>
</tr>
<tr>
<td>Colonic</td>
<td>Ileocolic, right, middle colic, or sigmoid colic vein</td>
<td>Right gonadal vein, right renal vein, and systemic lumbar veins</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>Ventral and dorsal pancreatic veins, and pancreaticoduodenal veins</td>
<td>IVC</td>
</tr>
<tr>
<td>Uterovaginal</td>
<td>Superior hemorrhoidal plexus</td>
<td>Uterine and hypogastric veins to the IVC</td>
</tr>
<tr>
<td>Vesical</td>
<td>Mesenteric veins</td>
<td>Internal and external iliac veins</td>
</tr>
<tr>
<td>Pericholecystic</td>
<td>Cystic vein or a branch of the right portal vein</td>
<td>Hepatic vein, intrahepatic portal vein, or anterior abdominal wall collaterals</td>
</tr>
<tr>
<td>Bronchial</td>
<td>Tracheobronchial plexus of veins</td>
<td>Pulmonary veins, bronchial veins, and esophageal/parasophageal varices</td>
</tr>
<tr>
<td>Mesenteric</td>
<td>Superior and inferior mesenteric veins</td>
<td>Retroperitoneal or pelvic veins (veins of Retzius)</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Collaterals</th>
<th>Afferent</th>
<th>Efferent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omental</td>
<td>Superior or inferior mesenteric veins</td>
<td>Retroperitoneal or pelvic veins or gastroesophageal veins</td>
</tr>
<tr>
<td>Retroperitoneal</td>
<td>Colic or mesenteric branches</td>
<td>Retrogastric varices or inferior phrenic veins to the left renal vein or directly into the IVC</td>
</tr>
<tr>
<td>Rectal/perirectal</td>
<td>Superior rectal veins</td>
<td>Middle and inferior rectal veins, tributaries of the internal iliac and pudendal veins</td>
</tr>
</tbody>
</table>

Shunts

- **Intrahepatic shunts**
 - Portal vein branches
 - Hepatic veins or directly to the intrahepatic IVC

- **Transhepatic shunts**
 - Recanalized paraumbilical vein
 - Left portal vein
 - Anterior abdominal wall veins and iliofemoral veins
 - Right infradiaphragmatic/apex type shunt
 - Left portal vein
 - Internal thoracic vein and intercostal vein
 - Left infradiaphragmatic
 - Portal branch of the left lateral segment of the liver
 - Intercostal vein or left pericardiophrenic vein to left
 - Left triangular ligament shunt
 - Inferior phrenic vein or left triangular ligament
 - Right posterior portal branch IVC shunt
 - Right posterior portal vein
 - IVC or the right adrenal vein
 - Bare area shunt
 - Right posterior portal vein
 - Intercostal vein or the right inferior phrenic vein
 - Aberrant left gastric vein shunt
 - Left portal vein
 - Hepatogastric ligament

- **Extrahepatic shunts**
 - Gastrorenal
 - Gastric varices or posterior or short gastric veins
 - Left renal vein
 - Splenorenal
 - Splenic vein
 - Left renal vein
 - Gastrocaval
 - Gastric varices or posterior gastric vein
 - Left inferior phrenic and pericardiophrenic vein to the IVC
 - Splenocaval
 - Splenic vein or periisplenic collaterals
 - Hypogastric vein into the IVC
 - Trans-splenic
 - Splenic vein
 - Intercostal veins
 - Mesenterico-gonadal/renal/caval
 - Mesenteric veins
 - Right gonadal vein
 - Splenic/coronary pulmonary vein
 - Left gastric vein or splenic vein
 - Inferior pulmonary vein, pericardiophrenic vein, or intercostal vein
 - Spleno-azygous/phrenic
 - Splenic vein
 - Left inferior phrenic, posterior abdominal wall veins, or hemiazygous vein
 - Pancreaticoduodenal hemiazygous
 - Ventral and dorsal pancreatic veins, and pancreaticoduodenal veins
 - Posterior abdominal wall veins or hemiazygous vein
 - Left renal hemiazygous
 - Left renal vein
 - Hemiazygous vein
 - Vertebrolumar azygous
 - Ascending lumbar vein
 - Azygous vein
 - Anterior abdominal wall
 - Superficial epigastric and inferior epigastric vein
 - Superior epigastric and lateral thoracic veins
 - Inferior phrenic pericardiophrenic
 - Inferior phrenic vein
 - Pericardiophrenic vein
Varices
The most common varices seen in PHT are esophageal/paraesophageal varices (50%), followed by gastric/perigastric varices (10–35%). Varices elsewhere (ectopic varices) are less common. They include duodenal, jejunoileal, colonic, pancreatic, mesenteric, vesical, pericholecystic, retroperitoneal, and rectal/perirectal varices. Esophageal varices are the most common to bleed in cirrhotic patients. The risk of bleeding from the gastric varices is lower than that from the esophageal varices; however, the severity of bleeding is significantly higher because of their large size. The ectopic varices, although uncommon, have a fourfold increased risk of bleeding when compared with the esophageal varices. Ectopic variceal bleeds are difficult to control by any means, and larger bleeds are potentially fatal.

Shunts
Shunts can be divided into intrahepatic, transhepatic, and extrahepatic shunts. Intrahepatic shunts can be single or multiple shunts connecting the portal vein branch to the

Fig. 12 Bridging collaterals in extrahepatic portal vein obstruction (EHPVO). (A) Ultrasonography (USG) image shows echogenic thrombus completely occluding the portal vein (between arrows). (B) The color Doppler image shows small developing peribiliary vessels around CBD. (C) Computed tomography (CT) done after a year shows large caliber peribiliary venous collaterals (curved arrow) forming cavernoma.

Fig. 13 Types of collaterals in portal hypertension. (A) Computed tomography (CT) image shows a dilated left gastric vein (arrow), an example of tributary collateral. (B) CT image shows a recanalized paraumbilical vein (arrow), an example of developed collateral. (C,D) CT images show nonvisualization of the portal vein with multiple peribiliary collaterals (bend arrows) replacing it, which is an example of bridging collateral.
intrahepatic IVC or hepatic veins. The transhepatic shunts connect the intrahepatic branches of the portal vein with a systemic vein outside the liver. The commonest transhepatic shunt is the recanalized paraumbilical vein. The extrahepatic shunts are between the extrahepatic portal vein tributaries with a systemic vein outside the liver. Among these shunts, the intrahepatic shunts are almost exclusively seen in BCS and very rare in other causes of PHT.

The extrahepatic shunts in BCS are also characteristic and include left renal hemiazygous, vertebral lumbar azygous, superficial anterior abdominal wall, and inferior phrenic pericardiophrenic shunts (► Fig. 14).

Diagnosis of portal hypertension

Diagnosis of PHT is by demonstrating its direct or associated signs clinically or with imaging. Direct signs include dilated splenoportal axis (main portal vein diameter >13 mm and splenic vein diameter >10 mm), reversed portal vein flow and presence of collaterals. The important associated findings include splenomegaly (length >12 cm) and ascites.

US and Doppler has the advantage of being a noninvasive, cost-effective, real-time test. It helps identify patency and direction of flow in relevant vessels (portal vein, splenoportal axis, hepatic veins, and IVC) and frequently identifies collaterals. The normal portal vein flow on Doppler is always hepatopetal with a fairly uniform flow and slight undulation/phasicity due to respiration and cardiac activity. The normal mean flow velocity is 12 to 18 cm/s (or peak velocity from 20 to 40 cm/s). As PHT starts to develops, the flow in the portal vein decreases and loses normal undulation and becomes monophasic. With more severe PHT, there will be reverse/hepatofugal flow. However, if intra- and transhepatic collaterals beyond the level of portal vein are present, the forward flow in portal vein is maintained even with severe PHT. To increase the objectivity and reproducibility of US, optimization of technique is needed. The portal vein diameter should be measured at the point it crosses anterior to the IVC. For Doppler evaluation, the most important technical requirement is the need to keep the angle of insonation less than 60 degrees. The respiration...
pattern can greatly influence the flow in the portal system. Scanning should be done in gentle respiration. Performing scan in arrested or deep inspiration can increase the portal vein caliber and halt or even reverse the flow, and hence should be avoided.

CT and MRI are usually considered the second-line modality in diagnosing PHTN when US is inadequate due to patient factors causing poor acoustic window. CT interpretation is not based on flow dynamics, but based on morphological changes in vessels and organs and the presence of collaterals, which are always better depicted than in US. MRI also provides morphologic information comparable to the CT scan. Phase contrast MRI technique can offer quantitative information about the portal venous flow. Other than for the cases with inadequate US, CT and MRI are important in preoperative planning of portosystemic shunt surgeries to identify technically feasible shunts and complicating factors.

Interventional radiology (IR) in portal hypertension

IR plays a major role in diagnosis and management of PHT. HVPG and transjugular liver biopsy (TJLB) are invasive diagnostic tests. The HVPG represents the portal pressure indirectly, to optimize the medication to control PHT. TJLB is performed through a transvenous access, avoiding the liver capsule. It is safer in patients with ascites or deranged bleeding parameters.

Transjugular intrahepatic portosystemic shunts (TIPS) are performed in patients of PHT who do not respond to endoscopic management of variceal bleeding. TIPS is also performed in patients with refractory ascites secondary to PHT. It reduces portal pressure. Adding US to the fluoroscopic guidance during the creation of TIPS increases the success rate and reduces the complication and radiation dose. A covered stent placed in the parenchymal tract increases long-term patency. A complication of TIPS is hepatic encephalopathy.

Balloon-occluded retrograde obliteration (BRTO) of gastric varices is done to treat bleeding gastric varices. The access is through the left renal vein into the variceal outflow from the stomach wall. The varices are obliterated by temporarily keeping a balloon inflated and retrogradely injecting sclerosants like sodium tetradecyl sulfate. BRTO increases the portal pressure, in contrast to TIPS (►Fig. 15). Bleeding ectopic varices like the paraumbilical collateral veins, when suitable, may be accessed percutaneously under image guidance for sclerotherapy.

An acutely thrombosed portal vein may be accessed percutaneously or via a transjugular access for pharmacological thrombolysis and mechanical thrombectomy. Chronically

![Fig. 15 Balloon retrograde obliteration (BRTO) done for a patient with bleeding gastric varices. (A) The preprocedure computed tomography (CT) image shows a large collateral (arrow) in the cardia of the stomach. (B) Digital subtraction venogram image shows the transfemoral venous approach with the tip of the catheter in the efferent vein (arrowhead) joining the left renal vein. (C) Venogram image shows an inflated balloon in the efferent vein (arrow) with contrast stasis in the collateral. Lipiodol mixed with 3% sodium tetradecyl sulfate foam was then used to embolize the varices (not shown). (D) The postprocedure CT image shows dense contrast within the collateral (arrow), which represents lipiodol-mixed sclerosant within the collateral.](image-url)
occluded portal veins can be treated by TIPS to reduce portal pressure. Left-sided PHT (LSPH) or sinistral hypertension is a potentially life-threatening cause of GI hemorrhage.26 It usually occurs as a result of isolated obliteration of the splenic vein. Partial splenic embolization is a technique to reduce the flow into the spleen and indirectly reduce the splenic venous outflow pressure in the collateral veins. Usually, the subdiafragmatic portion of the spleen is spared to minimize the postprocedural symptoms.

IR is an option when surgically created shunts require revisions, which may be achieved by balloon angioplasty or stenting.54

Recanalization of occluded IVC or hepatic veins in patients with BCS facilitates physiological restoration.59 Recanalization of the hepatic vein could be attempted through the transjugular or percutaneous accesses. Cannula-assisted techniques increase the chances of recanalization.60

Stenting should be considered when balloon angioplasty is not successful in retaining the patency or reducing pressure gradient. If the hepatic veins are not repairable, TIPS is considered to treat significantly symptomatic patients. The tract in such patients is created between the IVC and the portal vein, known as direct intrahepatic portosystemic shunt (DIPS). Multiple IR procedures may be required over a period of time in patients of BCS.61

A percutaneous peritoneovenous shunt is a palliative option in a selective subgroup of patients with refractory ascites who are not suitable for other specific treatment options.62

Imaging thus has a diagnostic role to identify the etiology and the severity of PHT. It also has a varied therapeutic role to control bleeding and other secondary manifestations of this condition.

Conflict of Interest
None declared.

References
3 Sangster GP, Previgliano CH, Nader M, Chwoschtschinsky E, Heldmann MG. MDCT imaging findings of liver cirrhosis: spectrum of hepatic and extrahepatic abdominal complications. HPB Surg 2013;2013:129396
7 Gherlan GS. Liver ultrasound elastography: more than staging the disease. World J Hepatol 2015;7(12):1595–1600
11 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; Clinical Practice Guideline Panel; Chair; EASL Governing Board representative; Panel members. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis - 2021 update. J Hepatol 2021;75(03):659–689

McIndoe AH. Vascular lesions of portal cirrhosis. Arch Pathol (Chic) 1928;5:23–40

Indiran V, Vinod Singh N, Ramachandra Prasad T, Maduraimuthu P. Does coronal oblique length of spleen on CT reflect splenic index? Abdom Radiol (NY) 2017;42(05):1444–1448

