Clin Colon Rectal Surg 2023; 36(06): 391-399
DOI: 10.1055/s-0043-1767708
Review Article

The Progress of Colorectal Polyposis Syndrome in Chinese Population

Zhijun Yuan*
1   Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
,
Mengyuan Yang*
2   Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
,
Ying Yuan
2   Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
› Author Affiliations
Funding This work was supported by the Provincial Key R&D Program of Zhejiang Province (2021C03125).

Abstract

The pathogenesis, clinical phenotype, treatment strategy, and family management of hereditary tumor syndromes are different from those of sporadic tumors. Nearly a quarter of patients with colorectal cancer show significant familial aggregation and genetic predisposition, and 5 to 10% are associated with definite genetic factors. According to the clinical phenotype, it can be divided into nonpolyposis syndrome and polyposis syndrome. Among the polyposis syndrome patients with definite clinical symptoms, there are still some patients with unknown etiology (especially attenuated familial adenomatous polyposis), which is a difficult problem in clinical diagnosis and treatment. Therefore, for this rare disease, it is urgent to carry out multicenter studies, complete the gene variation spectrum, explore new pathogenic factors, and accumulate clinical experience. This article mainly introduces the research progress and related work of colorectal polyposis syndrome in China.

* Zhijun Yuan and Mengyuan Yang are co-first authors, and they contributed equally to the work.




Publication History

Article published online:
09 April 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 AlDubayan SH, Giannakis M, Moore ND. et al. Inherited DNA-repair defects in colorectal cancer. Am J Hum Genet 2018; 102 (03) 401-414
  • 2 Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology 2010; 138 (06) 2044-2058
  • 3 Yurgelun MB, Kulke MH, Fuchs CS. et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol 2017; 35 (10) 1086-1095
  • 4 Kastrinos F, Syngal S. Inherited colorectal cancer syndromes. Cancer J 2011; 17 (06) 405-415
  • 5 Palles C, Cazier JB, Howarth KM. et al; CORGI Consortium, WGS500 Consortium. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013; 45 (02) 136-144
  • 6 Weren RD, Ligtenberg MJ, Kets CM. et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet 2015; 47 (06) 668-671
  • 7 Adam R, Spier I, Zhao B. et al. Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet 2016; 99 (02) 337-351
  • 8 Jaeger E, Leedham S, Lewis A. et al; HMPS Collaboration. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet 2012; 44 (06) 699-703
  • 9 Gala MK, Mizukami Y, Le LP. et al. Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology 2014; 146 (02) 520-529
  • 10 Valle L, de Voer RM, Goldberg Y. et al. Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med 2019; 69: 10-26
  • 11 Weiss JM, Gupta S, Burke CA. et al. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 1.2021. J Natl Compr Canc Netw 2021; 19 (10) 1122-1132
  • 12 Liang S, Mao Y, Liao M. et al. Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. Int J Biol Sci 2020; 16 (01) 135-146
  • 13 Kanth P, Grimmett J, Champine M, Burt R, Samadder NJ. Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol 2017; 112 (10) 1509-1525
  • 14 Cottrell S, Bicknell D, Kaklamanis L, Bodmer WF. Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet 1992; 340 (8820): 626-630
  • 15 Shu Z, Yanqin H, Ying Y. Hereditary colorectal cancer in china. Hered Cancer Clin Pract 2005; 3 (04) 155-164
  • 16 Yang L, Parkin DM, Li LD, Chen YD, Bray F. Estimation and projection of the national profile of cancer mortality in China: 1991-2005. Br J Cancer 2004; 90 (11) 2157-2166
  • 17 Bülow S, Björk J, Christensen IJ. et al; DAF Study Group. Duodenal adenomatosis in familial adenomatous polyposis. Gut 2004; 53 (03) 381-386
  • 18 Speake D, Evans DG, Lalloo F, Scott NA, Hill J. Desmoid tumours in patients with familial adenomatous polyposis and desmoid region adenomatous polyposis coli mutations. Br J Surg 2007; 94 (08) 1009-1013
  • 19 Slowik V, Attard T, Dai H, Shah R, Septer S. Desmoid tumors complicating Familial Adenomatous Polyposis: a meta-analysis mutation spectrum of affected individuals. BMC Gastroenterol 2015; 15: 84
  • 20 Vasen HF. Clinical diagnosis and management of hereditary colorectal cancer syndromes. J Clin Oncol 2000; 18 (21, Suppl): 81S-92S
  • 21 Romania A, Zakov ZN, McGannon E, Schroeder T, Heyen F, Jagelman DG. Congenital hypertrophy of the retinal pigment epithelium in familial adenomatous polyposis. Ophthalmology 1989; 96 (06) 879-884
  • 22 Wang TT, Chen SQ, Zhang XM. Germline mutation of adenomatous polyposis coli gene in Chinese patients with familial adenomatous polyposis [in Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2008; 25 (02) 199-202
  • 23 Chen QW, Zhang XM, Zhou JN. et al. Analysis of small fragment deletions of the APC gene in Chinese patients with familial adenomatous polyposis, a precancerous condition. Asian Pac J Cancer Prev 2015; 16 (12) 4915-4920
  • 24 Wang D, Liang S, Zhang Z. et al. A novel pathogenic splice acceptor site germline mutation in intron 14 of the APC gene in a Chinese family with familial adenomatous polyposis. Oncotarget 2017; 8 (13) 21327-21335
  • 25 Liu WQ, Dong J, Peng YX, Li WL, Yang J. Synonymous mutation adenomatous polyposis coliΔ486s affects exon splicing and may predispose patients to adenomatous polyposis coli/mutY DNA glycosylase mutation–negative familial adenomatous polyposis. Mol Med Rep 2018; 18 (06) 4931-4939
  • 26 Yang M, Zhu L, Zhu L, Xu D, Yuan Y. Role of a rare variant in APC gene promoter 1B region in classic familial adenomatous polyposis. Digestion 2021; 102 (04) 527-533
  • 27 Pavicic W, Nieminen TT, Gylling A. et al. Promoter-specific alterations of APC are a rare cause for mutation-negative familial adenomatous polyposis. Genes Chromosomes Cancer 2014; 53 (10) 857-864
  • 28 Rohlin A, Engwall Y, Fritzell K. et al. Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis. Oncogene 2011; 30 (50) 4977-4989
  • 29 Snow AK, Tuohy TM, Sargent NR, Smith LJ, Burt RW, Neklason DW. APC promoter 1B deletion in seven American families with familial adenomatous polyposis. Clin Genet 2015; 88 (04) 360-365
  • 30 Lin Y, Lin S, Baxter MD. et al. Novel APC promoter and exon 1B deletion and allelic silencing in three mutation-negative classic familial adenomatous polyposis families. Genome Med 2015; 7 (01) 42
  • 31 Kadiyska TK, Todorov TP, Bichev SN. et al. APC promoter 1B deletion in familial polyposis–implications for mutation-negative families. Clin Genet 2014; 85 (05) 452-457
  • 32 Masson AL, Talseth-Palmer BA, Evans TJ. et al. Copy number variants associated with 18p11.32, DCC and the promoter 1B region of APC in colorectal polyposis patients. Meta Gene 2015; 7: 95-104
  • 33 Kalbfleisch T, Brock P, Snow A, Neklason D, Gowans G, Klein J. Characterization of an APC promoter 1B deletion in a patient diagnosed with familial adenomatous polyposis via whole genome shotgun sequencing. F1000 Res 2015; 4: 170
  • 34 Yamaguchi K, Nagayama S, Shimizu E. et al. Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis. Sci Rep 2016; 6: 26011
  • 35 He S, Du J, Liu F. Advance in research on the correlation between genotypes of susceptible mutations and clinical phenotype of familial adenomatous polyposis [in Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2017; 34 (06) 919-923
  • 36 Lam DS, Kwok SP, Kwok AK, Liew CT, Lau JW, Pang CC. Incidence and predictive value of congenital hypertrophy of retinal pigment epithelium in Chinese familial adenomatous polyposis patients. Chin Med J (Engl) 1998; 111 (03) 278-281
  • 37 Bonnet LA, Conway RM, Lim LA. Congenital hypertrophy of the retinal pigment epithelium (CHRPE) as a screening marker for familial adenomatous polyposis (FAP): systematic literature review and screening recommendations. Clin Ophthalmol 2022; 16: 765-774
  • 38 Cai S, Yu Y, Xie X. et al. Study of diagnostic value of congenital hypertrophy of retinal pigment epithelium in Chinese familial adenomatous polyposis patients. Eur J Cancer Prev 2022; 31 (05) 422-429
  • 39 Wang J, Jia N, Lin Q. et al. Clinicopathological and molecular characteristics of abdominal desmoid tumors in the Chinese population: a single-center report of 15 cases. Oncol Lett 2019; 18 (06) 6443-6450
  • 40 Ge S, Cheng D, Zhang X. et al. Using genotype to assist clinical surveillance: a retrospective study of Chinese familial adenomatous polyposis patients. Am J Cancer Res 2022; 12 (09) 4254-4266
  • 41 Yang J, Liu QW, Li LW, Wang QZ, Hong M, Dong J. Familial adenomatous polyposis in China. Oncol Lett 2016; 12 (06) 4877-4882
  • 42 Xie LJ, Ruan DD, Zhang JH. et al. Mutational analysis of a familial adenomatous polyposis pedigree with bile duct polyp phenotype. Can J Gastroenterol Hepatol 2021; 2021: 6610434
  • 43 Yan ML, Pan JY, Bai YN, Lai ZD, Chen Z, Wang YD. Adenomas of the common bile duct in familial adenomatous polyposis. World J Gastroenterol 2015; 21 (10) 3150-3153
  • 44 Win AK, Dowty JG, Cleary SP. et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology 2014; 146 (05) 1208-11.e1 , 5
  • 45 Balaguer F, Castellví-Bel S, Castells A. et al; Gastrointestinal Oncology Group of the Spanish Gastroenterological Association. Identification of MYH mutation carriers in colorectal cancer: a multicenter, case-control, population-based study. Clin Gastroenterol Hepatol 2007; 5 (03) 379-387
  • 46 Win AK, Reece JC, Dowty JG. et al. Risk of extracolonic cancers for people with biallelic and monoallelic mutations in MUTYH. Int J Cancer 2016; 139 (07) 1557-1563
  • 47 Wang M, Zhu F, Luo N, Han T, Wang M. A case report of a patient with first phenotype of papillary thyroid carcinoma and heterochronous multiprimary tumor harboring germline MUTYH Arg19*/Gly286Glu mutations. Oral Oncol 2021; 112: 104987
  • 48 Castellsagué E, González S, Nadal M. et al. Detection of APC gene deletions using quantitative multiplex PCR of short fluorescent fragments. Clin Chem 2008; 54 (07) 1132-1140
  • 49 Levi Z, Kariv R, Barnes-Kedar I. et al. The gastrointestinal manifestation of constitutional mismatch repair deficiency syndrome: from a single adenoma to polyposis-like phenotype and early onset cancer. Clin Genet 2015; 88 (05) 474-478
  • 50 Tan S, Wu X, Wang A, Ying L. Diagnostic challenges in a CMMRD patient with a novel mutation in the PMS2 gene: a case report. BMC Med Genomics 2021; 14 (01) 184
  • 51 Li CG, Jin P, Yang L. et al. Germline mutations in patients with multiple colorectal polyps in China. J Gastroenterol Hepatol 2017; 32 (10) 1723-1729
  • 52 Yang M, Zhao Y, Ding Y. et al. A truncated protein product of the germline variant of the DUOX2 gene leads to adenomatous polyposis. Cancer Biol Med 2021; 18 (01) 215-226
  • 53 Wang D, Zhang Z, Li Y. et al. Adenomatous polyposis coli gene mutations in 22 Chinese pedigrees with familial adenomatous polyposis. Med Sci Monit 2019; 25: 3796-3803
  • 54 Li N, Kang Q, Yang L. et al. Clinical characterization and mutation spectrum in patients with familial adenomatous polyposis in China. J Gastroenterol Hepatol 2019; 34 (09) 1497-1503
  • 55 Moisio AL, Järvinen H, Peltomäki P. Genetic and clinical characterisation of familial adenomatous polyposis: a population based study. Gut 2002; 50 (06) 845-850
  • 56 Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol 2019; 247 (05) 574-588
  • 57 McGarrity TJ, Amos C. Peutz-Jeghers syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci 2006; 63 (18) 2135-2144
  • 58 Wang Z, Wang Z, Wang Y. et al. High risk and early onset of cancer in Chinese patients with Peutz-Jeghers syndrome. Front Oncol 2022; 12: 900516
  • 59 Chen HY, Jin XW, Li BR. et al. Cancer risk in patients with Peutz-Jeghers syndrome: A retrospective cohort study of 336 cases. Tumour Biol 2017; 39 (06) 1010428317705131
  • 60 Volikos E, Robinson J, Aittomäki K. et al. LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 2006; 43 (05) e18
  • 61 Wang HH, Xie NN, Li QY, Hu YQ, Ren JL, Guleng B. Exome sequencing revealed novel germline mutations in Chinese Peutz-Jeghers syndrome patients. Dig Dis Sci 2014; 59 (01) 64-71
  • 62 Wu BD, Wang YJ, Fan LL. et al. Clinical and genetic analyses of 38 Chinese patients with Peutz-Jeghers syndrome. BioMed Res Int 2020; 2020: 9159315
  • 63 Gu GL, Zhang Z, Zhang YH. et al. Detection and analysis of common pathogenic germline mutations in Peutz-Jeghers syndrome. World J Gastroenterol 2021; 27 (39) 6631-6646
  • 64 Zhang Z, Duan FX, Gu GL, Yu PF. Mutation analysis of related genes in hamartoma polyp tissue of Peutz-Jeghers syndrome. World J Gastroenterol 2020; 26 (16) 1926-1937
  • 65 Huang Z, Miao S, Wang L. et al. Clinical characteristics and STK11 gene mutations in Chinese children with Peutz-Jeghers syndrome. BMC Gastroenterol 2015; 15: 166
  • 66 Zhao HM, Yang YJ, Duan JQ. et al. Clinical and genetic study of children with Peutz-Jeghers syndrome identifies a high frequency of STK11 de novo mutation. J Pediatr Gastroenterol Nutr 2019; 68 (02) 199-206
  • 67 Chen C, Zhang X, Wang D. et al. Genetic screening and analysis of LKB1 gene in Chinese patients with Peutz-Jeghers syndrome. Med Sci Monit 2016; 22: 3628-3640
  • 68 Zheng B, Wang C, Jia Z. et al. A clinical and molecular genetic study in 11 Chinese children with Peutz-Jeghers syndrome. J Pediatr Gastroenterol Nutr 2017; 64 (04) 559-564
  • 69 Chen CY, Zhang XM, Wang FY. et al. Mutation screening of LKB1 gene in familial Peutz-Jeghers syndrome patients [in Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012; 29 (02) 121-125
  • 70 Li M, Sun T, Jiang Y, Li J, Ning S, Zhou P. Analysis of STK11 gene variants among 64 patients with Peutz-Jeghers syndrome [in Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2019; 36 (09) 862-865
  • 71 Wang Z, Wu B, Mosig RA. et al. STK11 domain XI mutations: candidate genetic drivers leading to the development of dysplastic polyps in Peutz-Jeghers syndrome. Hum Mutat 2014; 35 (07) 851-858
  • 72 Zhao X, Li Y, Ling Y. et al. Mutation analysis of STK11 gene coding region for 20 Chinese patients with Peutz-Jeghers syndrome [in Chinese]. Nan Fang Yi Ke Da Xue Xue Bao 2012; 32 (04) 511-514
  • 73 Zhao ZY, Lei Y, Wang ZM. et al. Re-recognition of BMPR1A-related polyposis: beyond juvenile polyposis and hereditary mixed polyposis syndrome. Gastroenterol Rep (Oxf) 2023; 11: goac082
  • 74 Gao XH, Li J, Zhao ZY. et al. Juvenile polyposis syndrome might be misdiagnosed as familial adenomatous polyposis: a case report and literature review. BMC Gastroenterol 2020; 20 (01) 167
  • 75 Duan XY, Guo DC, Regalado ES. et al; University of Washington Center for Mendelian Genomics. SMAD4 rare variants in individuals and families with thoracic aortic aneurysms and dissections. Eur J Hum Genet 2019; 27 (07) 1054-1060
  • 76 Dang Y, Xu Q, Liu X, Wang L, Lin C. Clinical and functional characterisation of the SMAD4 germline variant c.1035C > A in a family with juvenile polyposis syndrome by whole-exome sequencing. Med Mol Morphol 2022
  • 77 Li J, Yen C, Liaw D. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275 (5308): 1943-1947
  • 78 Mester J, Eng C. Cowden syndrome: recognizing and managing a not-so-rare hereditary cancer syndrome. J Surg Oncol 2015; 111 (01) 125-130
  • 79 Yehia L, Eng C. 65 years of the double helix: one gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. Endocr Relat Cancer 2018; 25 (08) T121-T140
  • 80 Zhao M, Lin X, Fang Y. et al. Case report: duodenal carcinoma in a 40-year-old Asian man with Cowden syndrome. Front Surg 2022; 9: 935048
  • 81 Wong CW, Or PMY, Wang Y. et al. Identification of a PTEN mutation with reduced protein stability, phosphatase activity, and nuclear localization in Hong Kong patients with autistic features, neurodevelopmental delays, and macrocephaly. Autism Res 2018; 11 (08) 1098-1109
  • 82 Liu C, Li G, Chen R, Yang X, Zhao X, Zhao H. A novel PTEN gene promoter mutation and untypical Cowden syndrome. Chin J Cancer Res 2013; 25 (03) 306-311
  • 83 Chen XY, Lu F, Wang YM. et al. PTEN inactivation by germline/somatic c.950_953delTACT mutation in patients with Lhermitte-Duclos disease manifesting progressive phenotypes. Clin Genet 2014; 86 (04) 349-354
  • 84 Jiang T, Wang J, Du J. et al. Lhermitte-Duclos disease (dysplastic gangliocytoma of the cerebellum) and Cowden syndrome: clinical experience from a single institution with long-term follow-up. World Neurosurg 2017; 104: 398-406
  • 85 Liu J, Ding G, Zou K. et al. Genome sequencing analysis of a family with a child displaying severe abdominal distention and recurrent hypoglycemia. Mol Genet Genomic Med 2020; 8 (03) e1130
  • 86 Carballal S, Balaguer F, IJspeert JEG. Serrated polyposis syndrome; epidemiology and management. Best Pract Res Clin Gastroenterol 2022; 58-59: 101791
  • 87 Yan HHN, Lai JCW, Ho SL. et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut 2017; 66 (09) 1645-1656
  • 88 Buchanan DD, Sweet K, Drini M. et al. Risk factors for colorectal cancer in patients with multiple serrated polyps: a cross-sectional case series from genetics clinics. PLoS One 2010; 5 (07) e11636
  • 89 IJspeert JE, Rana SA, Atkinson NS. et al; Dutch workgroup serrated polyps & polyposis (WASP). Clinical risk factors of colorectal cancer in patients with serrated polyposis syndrome: a multicentre cohort analysis. Gut 2017; 66 (02) 278-284
  • 90 Ning YZ, Liu GY, Rao XL, Ma YC, Rong L. Synchronized early gastric cancer occurred in a patient with serrated polyposis syndrome: a case report. World J Clin Cases 2022; 10 (08) 2644-2649
  • 91 Rohlin A, Eiengård F, Lundstam U. et al. GREM1 and POLE variants in hereditary colorectal cancer syndromes. Genes Chromosomes Cancer 2016; 55 (01) 95-106
  • 92 Peng H, Cao X, Li HH, Carol L, Eu KW, Wang JP. Haplotype and linkage analysis in Chinese hereditary mixed polyposis syndrome [in Chinese]. Zhonghua Wei Chang Wai Ke Za Zhi 2005; 8 (04) 312-315