$\odot$ 



# Angioleiomyoma of the Sinonasal Tract: A Systematic Review of an Uncommon Clinicopathological Entity

Gianluca Velletrani<sup>1®</sup> Riccardo Maurizi<sup>1</sup> Alessandro De Padova<sup>1</sup> Stefano Di Girolamo<sup>1</sup>

<sup>1</sup> Department of Otorhinolaryngology, Università degli Studi di Roma Tor Vergata, Rome, Italy Address for correspondence Gianluca Velletrani, MD, Department of Otorhinolaryngology, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy (e-mail: gianluca.velletrani@gmail.com).

Int Arch Otorhinolaryngol 2024;28(2):e350-e366.

| Abstract                               | <ul> <li>Introduction Angioleiomyoma is a rare neoplasm that represents ~ 0.2 % of all head and neck benign tumors and ~ 2% of total cases of tumors of the sinonasal tract. It was once considered a possible subtype of leiomyoma, but, in the 2020 World Health Organization (WHO) classification of soft tissue tumors, it is accepted as a singular entity.</li> <li>Objective To systematically review the existing literature on angioleiomyoma in the light of the new classification of soft tissue tumors.</li> <li>Data Synthesis The present study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A</li> </ul> |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | comprehensive search in the PubMed, Cochrane, Scopus, and Google Scholar data-<br>bases was performed in January 2022. The search items included the following<br>keywords: <i>nasal angioleiomyoma</i> OR <i>sinonasal angioleiomyoma</i> OR <i>nasal vascular</i>                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | <i>leiomyoma</i> OR <i>sinonasal vascular leiomyoma</i> . A total of 87 patients were evaluated.<br>He age of the patients in the studies ranged from 15 to 88 years (mean age at diagnosis: 55.6 years). The most common site of involvement was the nasal septum (28.4%),                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Keywords                               | followed by the inferior turbinate (22.5%). The most common symptom was nasal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>angioleiomyoma</li> </ul>     | obstruction (66.7%), followed by epistaxis (47.1%). Surgical excision represented the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>sinonasal tract</li> </ul>    | main treatment, and there was recurrence of pathology in only 1 case (0.9%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>vascular leiomyoma</li> </ul> | Conclusion To our knowledge, only 87 cases of sinonasal-tract angioleiomyoma have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>angiomyoma</li> </ul>         | been previously described. The results of the present review seem to confirm the rarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>benign nasal tumor</li> </ul> | and the benign nature of this neoplasm, and they seem to confirm the necessity to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>nasal neoplasm</li> </ul>     | improve the available data about sinonasal-tract angioleiomyoma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# Introduction

Angioleiomyoma (ALM) of the sinonasal tract was originally described in 1966 by Maesaka et al.<sup>1</sup> Until the 2005 WHO Classification of Head and Neck Rumors (third edition),<sup>2</sup> ALM and leiomyoma were considered the same entity, described as a benign tumor of smooth-muscle phenotype. According

received May 23, 2022 accepted after revision February 2, 2023 DOI https://doi.org/ 10.1055/s-0043-1767798. ISSN 1809-9777. to this classification, primary leiomyomas of the sinonasal tract seemed to be very rare, with a predilection for the female sex (3.5:1), a peak in the sixth decade of life, and a prevalent location on the turbinates. Other than a positive history of radiant therapy, no risk factors have been reported. The subsequent 2017 WHO Classification of Head and Neck Tumors (fourth edition)<sup>3</sup> mentioned ALM as a possible

This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/).

Thieme Revinter Publicações Ltda., Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

<sup>© 2023.</sup> The Author(s).

subtype of leiomyoma with vascular differentiation. In this classification, all leiomyomas showed an equal sex distribution and a prevalence in the adult population; nevertheless, a clear distinction regarding epidemiology, location, and histopathology between the two entities was not reported. The 2020 WHO Classification of Soft Tissue Tumors (5<sup>th</sup> edition)<sup>4,5</sup> for the first time differentiated leiomyoma, of smooth-muscle phenotype, from ALM, of pericytic phenotype.

In the present paper, we have performed a systematic literature review on sinonasal tract ALM to identify previous case reports and to discuss histological features, management, and prognostic aspects of this tumor. Furthermore, we have analyzed possible modifications in the epidemiology, characteristics, and prevalent location of ALM of the data reported in the 2017 WHO Classification of Head and Neck Tumors<sup>3</sup> in comparison to the data reported in the 2020 WHO Classification of Soft Tissue Tumors.<sup>5</sup>

# **Review of the Literature**

The present study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Metaanalysis (PRISMA)statement.<sup>6</sup>

### Search Strategy

A comprehensive search in the PubMed, Scopus, Cochrane, and Google Scholar databases was performed in January 2022, with the collaboration of a medical librarian and without time restriction. The search items included the following keywords: *nasal angioleiomyoma* OR *sinonasal angioleiomyoma* OR *nasal vascular leiomyoma* OR *sinonasal vascular leiomyoma*. The search strategy was created using the Medical Subject Headings (MeSH) intended for PubMed and then tailored to the other databases.

Two independent investigators reviewed the literature found, which was written in English or Spanish. Duplicate articles were removed. Any disagreement regarding inclusion was resolved with a discussion between the two reviewers, and consensus was obtained. After the initial work was completed, the reference lists of the included articles were reviewed to identify and include additional eligible articles. Furthermore, all included studies were meticulously cross-referenced to ensure that patients were not included in multiple articles.

The systematic review was conducted following the PRISMA statement.<sup>6</sup>

## **Study Selection Criteria**

The following were used as inclusion criteria for the present study: studies with subjects of all ages, with a histopathological diagnosis of ALM according to the 2020 WHO Classification of Soft Tissues Tumors,<sup>5</sup> written in English or Spanish, and with the full text available. Review articles and commentaries were excluded. The articles were reviewed in full to assess the objectives and level of evidence of the studies. The nature of the present review did not require approval form the Institutional Review Board.

### **Data Extraction**

The reviewed articles were read in full by two of the authors, and each extracted data using a spreadsheet that included the author(s), the year of publication, the country, the number of patients with ALM, patient characteristics, symptoms, location and size of the tumor, histological subtype, markers, imaging exams, treatment, and follow-up.

### **Study Selection**

Through the PubMed, Scopus, Cochrane, and Google Scholar databases, 1.308 records were identified (**Fig. 1**). After the removal of duplicates, false titles, and studies with only the abstract available, 64 records were screened, and 16 were excluded because the full text was not available for 7 records, for another 7 records the language used was not in the inclusion criteria, and 2 records were narrative reviews. We assessed for eligibility 48 full-text articles considering the inclusion/exclusion criteria. The qualitative synthesis included 48 studies, and a case/case series study of sinonasal-tract ALM was reported among them. These studies were published over a period of 48 years, between 1973 and 2021. It is of note that, despite the fact that ALM of the sinonasal tract was originally described in 1966 by Maesaka et al.,<sup>1</sup> their study was excluded from the present review because the full text was not available.

# **Quality Appraisal**

To appraise the quality of the included articles, we used the Joanna Briggs Institute (JBI) Critical Appraisal Checklist,<sup>7</sup> which consists of an eight-item scale for case reports and a ten-item scale for case series. The former includes patient demographics, medical history, current clinical condition, description of diagnostic tests, treatment, postintervention clinical condition, adverse events, and the provision of takeaways. The latter evaluates the inclusion criteria, the method of measuring the condition, the validity of the diagnostic methods, whether the inclusion of the participants was consecutive, the completeness of the participants' inclusion, the reporting of the demographics, clinical information, and outcomes, and the appropriateness of the statistical analysis.

#### **Study Characteristics**

Six studies were conducted in the United States, five, in China, four, in India, the United Kingdom, and South Korea, three, in Italy, Japan and Brazil, two, in Germany and Spain, and one study was conducted in each of the following countries: Tunisia, Israel, Switzerland, Taiwan, Greece, Canada, France, Argentina, Saudi Arabia, Colombia, Turkey, and Malaysia. A total of 5 studies were retrospective, and 43 were case reports. The characteristics of the patients are summarized in **~Table 1**, **~Table 2**, and **~Table 3**.

A total of 87 patients were evaluated, and their ages ranged from 15 to 88 (mean age at diagnosis: 55.6) years. The male-to-female ratio was of  $\sim$  1:1 (53.5%, 46 male patients), and data regarding patient sex was not available in 1 case.

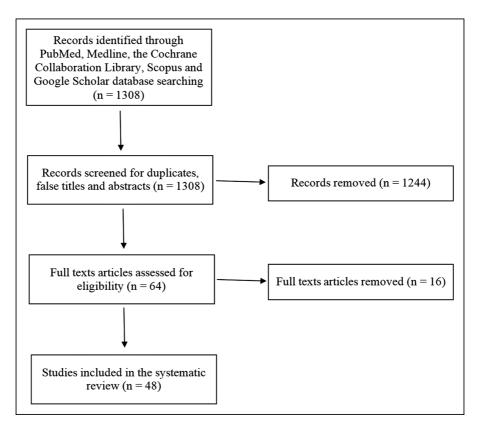



Fig. 1 Flowchart showing the systematic review of the literature.

The most common site of involvement was the nasal septum (n = 28; 35%), but it also occurred in the inferior turbinate (*n* = 18; 22.5%), nasal vestibule (*n* = 11; 13.75%), nasal floor (n = 5; 6.25%), middle turbinate (n = 4; 5%), ethmoidal sinus (n = 3; 3.75%), lateral wall of the nasal cavity (n=3; 3.75%), maxillary sinus (n=2; 2.5%), nasolacrimal duct (n = 2; 2.5%), between the middle and inferior turbinates (n = 1), superior turbinate (n = 1), and combined ethmoidal and maxillary sinus (n = 1). Data regarding tumor site was not available in seven cases. The right-to-left side ratio was of  $\sim$  1:1 (52.2%, 36 cases in the right side), and data regarding the side of the body in which the tumor was located was not available in 18 cases. The dimensional study of the tumor highlighted a mean larger diameter of 1.79 cm (range: 0.2 cm to 8 cm; no data for 21 cases), an average diameter of 1.52 cm (range: 0.5 cm to 4.5 cm; no data for 55 cases), and a smaller diameter of 1.18 cm (range: 0.2 cm 5 cm; no data for 64 cases).

The most common symptom was nasal obstruction (n = 58; 66.67%), followed by epistaxis (n = 41; 47.12%), pain (n = 15; 17.24%; local pain in 9 cases, facial pain in 3 cases, and 1 case of nasal dorsum pain, and 1 case each of jaw and tooth pain and of maxillary sinus pain), headache (n = 9; 10.34%), growing mass (n = 8; 9.19%), rhinorrhea (n = 9; 9.19%); 3 cases with suppurative rhinorrhea), pruritus (n = 3; 3.45%), difficulty breathing (n = 3; 3.45%), facial fullness (n = 3; 3.45%), ear alterations (n = 3; 3.45%); 1 case each of hearing loss, tinnitus, and ear pain), ocular alterations (n = 2; 2.3%); epiphora, styes), and anemia, nasolabial slight, upper-lip swelling, nasal scab, sneezing, hyposmia, larynx

pain, alar cartilage swelling, and maxillary swelling (n = 1). In 5 cases (5.75%, 1,15%) no symptoms were reported.

The most common surgical approach was excision (n = 85; 97.7%; in 3 cases, under local anesthesia), followed by excision with a previous embolization (n = 2; 2.3%).

The radiological exams most frequently performed were computed tomography (CT; n = 48; 55.17%) followed by both CT and magnetic resonance imaging (MRI + CT; n = 9; 10.34%) and X-rays (n = 4; 4.6%). No radiological exams were performed in 26 (29.9%) cases.

The most common histological subtype was solid (n = 32; 44.4%), followed by venous (n = 30; 41.67%), and cavernous (n = 10; 13.89%). Data regarding histological subtype was not available in 15 (17.2%) cases. Histopathologically, the tumor showed immunoreactivity to smooth-muscle actin (SMA; 42/42 cases; 100%), muscle-specific actin (MSA; 7/7 cases; 100%), actin (21/21 cases; 100%), desmin (25/30 cases; 83%), h-caldesmon (13/13 cases; 100%), vimentin (6/6 cases; 100%), FVIII (3/3 cases; 100%), CD56 (4/6 cases; 66.5%), CD31 (7/13 cases; 53%), CD34 (cluster of differentiation) (3/14 cases; 27.3%), myoglobin (1/2 cases; 50%), calponin (1/1 case; 100%), smooth-muscle myosin-heavy chain (SMMHC; 1/1 case; 100%), estrogen receptor (ER; 5/14 cases; 35.7%), progesterone receptor (PR; 7/14 cases; 50%), S100 (1/11 cases; 9%), no immunoreactivity to HMB45 (a monoclonal antibody that reacts against an antigen present in melanocytic tumors) (0/23 cases), keratin (0/4 cases), D2–40 (podoplanin) (0/2 cases), alpha-l antichymotrypsin (AACT; 0/1 case), and HHF-35 (a muscle actin-specific monoclonal antibody) (0/1 case). In-situ hybridization for the Epstein-Barr virus (EBV)

| Reference                                  | Year | Age | Sex | Site                          | Side | Size (cm)                    | Symptoms                                                                                              |
|--------------------------------------------|------|-----|-----|-------------------------------|------|------------------------------|-------------------------------------------------------------------------------------------------------|
| Schwartzan and<br>Schwartzan <sup>11</sup> | 1973 | 57  | М   | nm                            | R    | nm                           | Nasal obstruction,<br>headache                                                                        |
| Hanna et al. <sup>12</sup>                 | 1988 | 64  | F   | Inferior turbinate            | L    | $3.0 \times 1.2 \times 1.0$  | Nasal obstruction,<br>epistaxis, facial pain,                                                         |
| Sawada <sup>13</sup>                       | 1990 | 41  | М   | Nasal vestibule               | R    | nm                           | No symptoms                                                                                           |
| Ragbeer and Stone <sup>14</sup>            | 1990 | 49  | F   | Anterior nasal floor          | R    | 1.5 × 1.1 × 1.0              | Local pain, suppurative<br>rhinorrhea, epistaxis                                                      |
| Khan et al. <sup>15</sup>                  | 1994 | 71  | F   | Inferior turbinate            | L    | $4.0\times3.0\times1.5$      | Nasal obstruction                                                                                     |
| Ardekian et al. <sup>16</sup>              | 1996 | 54  | F   | Nasal septum                  | L    | 1.0 × 2.0                    | Nasal obstruction, local pain, epistaxis                                                              |
| Nicolai et al. <sup>17</sup>               | 1996 | 45  | F   | Ethmoidal sinus               | L    | 7.0 × 3.0                    | Nasal obstruction                                                                                     |
| Nall et al. <sup>18</sup>                  | 1997 | 43  | F   | Superior turbinate            | R    | nm                           | Nasal obstrution,<br>epistaxis, facial pain                                                           |
| Murono et al. <sup>19</sup>                | 1998 | 69  | F   | Inferior turbinate            | R    | $2.0\times1.5\times1.0$      | Epistaxis                                                                                             |
| Marioni et al. <sup>20</sup>               | 2002 | 70  | F   | Nasal vestibule               | R    | 1.5                          | Nasal obstruction,<br>epistaxis                                                                       |
| Osaki et al. <sup>21</sup>                 | 2002 | 67  | М   | Nasal septum                  | L    | 0.8                          | Nasal obstruction,<br>epistaxis                                                                       |
| Wang et al. <sup>22</sup>                  | 2004 | 70  | М   | Nasal septum                  | nm   | 1.1                          | Nasal obstruction,<br>epistaxis, pruritus                                                             |
|                                            |      | 66  | F   | Inferior turbinate            | nm   | 0.3                          | No symptoms                                                                                           |
|                                            |      | 62  | М   | Nasal vestibule               | nm   | 1.5                          | Nasal obstruction                                                                                     |
| Burkhardt and<br>Bejarano <sup>23</sup>    | 2006 | 35  | F   | nm                            | R    | 8.0 × 4,5 × 5.0              | Nasal obstruction,<br>epistaxis, nasal dorsum<br>pain, headache,<br>suppurative rhinorrhea,<br>anemia |
| Chen et al. <sup>24</sup>                  | 2007 | 88  | М   | Inferior turbinate            | R    | $0.93 \times 0.9 \times 0.8$ | Right-side hearing<br>impairment,<br>suppurative rhinorrhea                                           |
| Campelo et al. <sup>25</sup>               | 2008 | 44  | F   | Inferior turbinate head       | L    | 2.2 	imes 0.9 	imes 0.7      | Nasal obstruction,<br>epistaxis, pruritus                                                             |
| Tas et al. <sup>26</sup>                   | 2008 | 69  | М   | Ethmoidal and haxillary sinus | R    | 3.5                          | Nasal obstruction,<br>tinnitus                                                                        |
| Vafiadis et al. <sup>27</sup>              | 2008 | 68  | М   | Nasal vestibule floor         | R    | 2.0                          | Nasal obstruction, right<br>nasolabial line slight<br>bluntness, right upper<br>lip mild swelling     |
| He et al. <sup>28</sup>                    | 2009 | 58  | М   | Inferior turbinate            | R    | 2.0 	imes 1.5 	imes 0.7      | Nasal obstruction,<br>epistaxis                                                                       |
| Michael and Shah <sup>29</sup>             | 2009 | 34  | М   | Inferior turbinate            | L    | nm                           | Nasal obstruction,<br>epistaxis                                                                       |
| Navarro Júnior et al. <sup>30</sup>        | 2010 | 62  | F   | Nasal septum                  | L    | 4.0×2.0                      | Nasal obstruction,<br>epistaxis, facial pain                                                          |
| Yoon et al. <sup>31</sup>                  | 2013 | 69  | М   | Nasal vestibule               | nm   | 1.8                          | Nasal obstruction                                                                                     |
|                                            |      | 64  | М   | Inferior turbinate            | nm   | 0.8                          | No symptoms                                                                                           |
|                                            |      | 65  | М   | nm                            | nm   | 1.0                          | No symptoms                                                                                           |
|                                            |      | 37  | М   | Nasal septum                  | nm   | 1.0                          | Nasal obstruction,<br>epistaxis, pruritus                                                             |
|                                            |      | 61  | F   | Nasal septum                  | nm   | 2.0                          | Nasal obstruction                                                                                     |

(Continued)

# Table 1 (Continued)

| Reference                                   | Year | Age | Sex | Site                      | Side | Size (cm)               | Symptoms                                                                 |  |
|---------------------------------------------|------|-----|-----|---------------------------|------|-------------------------|--------------------------------------------------------------------------|--|
| Arruda et al. <sup>32</sup>                 | 2014 | 49  | F   | Nasal septum              | L    | 1.6 	imes 1.5 	imes 1.1 | Nasal obstruction, local pain, nasal scabs, bulging                      |  |
| Yi CH et al <sup>33</sup>                   | 2015 | 70  | F   | Nasal vestibule           | L    | 1.2 × 0.8               | Epistaxis                                                                |  |
| Burkart and<br>Schoenenberger <sup>34</sup> | 2015 | 45  | М   | Inferior turbinate        | L    | 0.9 	imes 1.1 	imes 0.8 | Epistaxis, local pain, growing mass                                      |  |
| Varghese et al. <sup>35</sup>               | 2015 | 40  | М   | Inferior meatus           | R    | 3.0 × 3.0               | Epistaxis                                                                |  |
| Bhandarkar et al. <sup>36</sup>             | 2015 | 69  | F   | Middle turbinate          | L    | 4.3 × 2.3 × 3.4         | Nasal obstruction,<br>epistaxis, headache,<br>hyposmia                   |  |
| Kim et al. <sup>37</sup>                    | 2015 | 70  | F   | Inferior turbinate        | L    | 1.6 	imes 1.2 	imes 1.4 | Nasal obstruction,<br>epistaxis                                          |  |
| Agaimy et al. <sup>38</sup>                 | 2015 | 73  | М   | Nasal cavity lateral wall | R    | 1.4                     | Nasal obstruction                                                        |  |
|                                             |      | 82  | М   | Inferior turbinate        | L    | 0.8                     | Epistaxis                                                                |  |
|                                             |      | 53  | М   | Nasal vestibule           | L    | 0.8                     | Growing mass                                                             |  |
|                                             |      | 76  | F   | Nasal vestibule           | R    | 0.6                     | Growing mass                                                             |  |
|                                             |      | 63  | М   | Nasal septum              | R    | 0.7                     | Rhinorrea                                                                |  |
|                                             |      | 25  | F   | Ethmoid sinus             | nm   | 0.2                     | Facial fullness                                                          |  |
|                                             |      | 77  | F   | Nm                        | nm   | 0.7                     | Growing mass                                                             |  |
|                                             |      | 62  | F   | Nm                        | nm   | 1.5                     | Growing mass                                                             |  |
|                                             |      | 48  | F   | Nm                        | nm   | 1.2                     | Growing mass                                                             |  |
|                                             |      | 26  | М   | Inferior nasal floor      | R    | 2.5                     | Local pain                                                               |  |
|                                             |      | 55  | М   | Nasal septum              | R    | 1.0                     | Nasal obstruction,<br>sneezing, difficulty<br>breathing, facial fullness |  |
|                                             |      | 77  | F   | Inferior turbinate        | R    | 0.9                     | Epistaxis                                                                |  |
|                                             |      | 51  | F   | nm                        | L    | 1.7                     | Nasal obstruction,<br>epistaxis, ear pain,<br>cough, growing mass        |  |
|                                             |      | 36  | М   | Nasal cavity lateral wall | R    | 1.7                     | Growing mass                                                             |  |
|                                             |      | 65  | М   | Nasal septum              | R    | 1.0                     | Nasal obstruction,<br>epistaxis, difficulty<br>breathing                 |  |
|                                             |      | 66  | М   | Inferior turbinate        | R    | 1.2                     | Nasal obstruction,<br>epistaxis                                          |  |
| Hammedi et al. <sup>39</sup>                | 2015 | 42  | F   | Nasal septum              | L    | 1.5 × 1.0               | Nasal obstruction,<br>epistaxis                                          |  |
| Villarreal Patiño et al. <sup>40</sup>      | 2015 | 49  | М   | Middle turbinate          | L    | nm                      | Nasal obstruction, epistaxis                                             |  |
| Lau et al. <sup>41</sup>                    | 2016 | 43  | F   | Maxillary sinus           | R    | nm                      | Nasal obstruction,<br>epistaxis, facial pain,<br>rhinorrhea              |  |
| Zhu et al. <sup>42</sup>                    | 2016 | 53  | М   | Nasal septum              | nm   | $1.0\times0.5\times0.3$ | Epistaxis                                                                |  |
|                                             |      | 74  | F   | Nasal cavity lateral wall | nm   | $2.0\times1.0\times1.0$ | Nasal obstruction                                                        |  |
|                                             |      | 65  | F   | Nasal septum              | nm   | $1.5\times0.5\times0.5$ | Nasal obstruction,<br>epistaxis                                          |  |
|                                             |      | 55  | М   | Inferior turbinate        | nm   | 1.0 	imes 0.8 	imes 0.5 | Nasal obstruction,<br>epistaxis                                          |  |
|                                             |      | 62  | М   | Middle turbinate          | nm   | 1.5 	imes 1.0 	imes 1.0 | Nasal obstruction,<br>epistaxis                                          |  |

# Table 1 (Continued)

| Reference                                    | Year | Age | Sex | Site                                          | Side | Size (cm)               | Symptoms                                                     |
|----------------------------------------------|------|-----|-----|-----------------------------------------------|------|-------------------------|--------------------------------------------------------------|
|                                              |      | 54  | М   | Nasal vestibule                               | nm   | $1.0\times0.5\times0.5$ | Nasal obstruction                                            |
| Varadarajan<br>and Justice <sup>43</sup>     | 2016 | 69  | F   | Nasal septum                                  | R    | 1.3 × 1.1               | Nasal obstruction,<br>epistaxis                              |
| Chen et al. <sup>44</sup>                    | 2016 | 73  | М   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>rhinorrhea                             |
|                                              |      | 15  | М   | Nasal septum                                  | R    | nm                      | Nasal obstruction,<br>epistaxis, local pain                  |
|                                              |      | 23  | F   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>headache                               |
|                                              |      | 38  | F   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>headache                               |
|                                              |      | 45  | М   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>headache                               |
|                                              |      | 52  | F   | Nasal septum                                  | R    | nm                      | Nasal obstruction,<br>epistaxis, local pain                  |
|                                              |      | 57  | F   | Nasal septum                                  | R    | nm                      | Nasal obstruction,<br>epistaxis, local pain                  |
|                                              |      | 63  | F   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>headache                               |
|                                              |      | 55  | М   | Nasal septum                                  | R    | nm                      | Nasal obstruction,<br>epistaxis, local pain                  |
|                                              |      | 25  | М   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>headache                               |
|                                              |      | 67  | F   | Nasal septum                                  | R    | nm                      | Nasal obstruction,<br>rhinorrhea                             |
|                                              |      | 69  | F   | Nasal septum                                  | L    | nm                      | Nasal obstruction,<br>epistaxis, larynx pain,<br>rhinorrhea  |
| Mathieu et al. <sup>45</sup>                 | 2017 | 54  | М   | Nasal floor                                   | R    | 1.0 × 1.0               | Nasal obstruction,<br>epistaxis, maxillary<br>sinuses pain   |
| Khanani et al. <sup>46</sup>                 | 2017 | 33  | F   | Ethmoid sinus                                 | R    | 3.0 	imes 3.0 	imes 1.0 | Nasal obstruction,<br>epistaxis                              |
| Drapier et al. <sup>47</sup>                 | 2019 | 60  | М   | Middle turbinate                              | L    | nm                      | Epistaxis                                                    |
| Lee et al. <sup>48</sup>                     | 2019 | 45  | М   | Anterior nasal floor                          | R    | 1.9                     | Nasal obstruction,<br>discomfort                             |
| Choi <sup>49</sup>                           | 2019 | 30  | М   | Maxillary sinus                               | L    | 3.5 × 3.2               | Headache                                                     |
| Apthorp et al. <sup>50</sup>                 | 2020 | 64  | F   | Mucocutaneous nasal<br>vestibule              | R    | 1.0                     | Nasal obstruction, alar cartilage swelling                   |
| Arora et al. <sup>51</sup>                   | 2020 | 59  | М   | Between middle and inferior turbinate         | L    | 2.7 × 1.6 × 2.1         | No symptoms                                                  |
| Heyman et al. <sup>52</sup>                  | 2020 | 33  | М   | Inferior turbinate medial<br>border           | R    | 1.3                     | Facial pain                                                  |
| Ho et al. <sup>53</sup>                      | 2020 | 45  | М   | Anterior nasal floor                          | L    | 2.0 	imes 1.0 	imes 1.0 | Nasal obstruction,<br>epistaxis                              |
| Nada et al. <sup>54</sup>                    | 2020 | 69  | М   | Anterolateral nasal<br>vestibule              | L    | nm                      | Nasal obstruction, jaw<br>and tooth pain, facial<br>fullness |
| Escamilla<br>Carpintero et al. <sup>55</sup> | 2021 | 42  | nm  | Hasner valve and inside the lacrimonasal duct | L    | 3.0                     |                                                              |

(Continued)

# Table 1 (Continued)

| Reference                       | Year | Age | Sex | Site                    | Side | Size (cm)                   | Symptoms                                                         |
|---------------------------------|------|-----|-----|-------------------------|------|-----------------------------|------------------------------------------------------------------|
|                                 |      |     |     |                         |      |                             | Nasal obstruction,<br>epiphora, left eye inner<br>corner bulging |
| D'Aguanno et al. <sup>56</sup>  | 2021 | 50  | М   | Inferior turbinate      | L    | 1.3                         | Nasal obstruction, facial<br>pain, Left maxillary<br>swelling    |
|                                 |      | 63  | М   | Inferior turbinate head | L    | nm                          | Nasal obstruction,<br>rhinorrhea                                 |
| Noreikaite et al. <sup>57</sup> | 2021 | 66  | М   | Nasal septum            | R    | 1.0 	imes 0.8 	imes 0.6     | Nasal obstruction,<br>difficulty breathing                       |
|                                 |      | 52  | F   | Nasal septum            | R    | $0.4 \times 0.4 \times 0.2$ | Epistaxis                                                        |
| Azhdam et al. <sup>58</sup>     | 2021 | 65  | F   | Nasolacrimal duct       | R    | nm                          |                                                                  |

| Reference                                  | Subtype   | Treatment                                                                                                                        | Follow-up                     | Imaging |
|--------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|
| Schwartzan and<br>Schwartzan <sup>11</sup> | nm        | Excision with transantral<br>ethmoid sphenoidectomy                                                                              | nm                            | X-rays  |
| Hanna et al. <sup>12</sup>                 | Solid     | Excision of the anterior two-<br>thirds of the inferior turbinate                                                                | No recurrence after 1.0 year  | X-rays  |
| Sawada <sup>13</sup>                       | Cavernous | Excision                                                                                                                         | No recurrence after 1.0 year  | nm      |
| Ragbeer and Stone <sup>14</sup>            | Solid     | Excision through an incision in the anterior maxillary mucobuccal fold                                                           | No recurrence after 1.0 year  | X-rays  |
| Khan et al. <sup>15</sup>                  | Venous    | Excision with turbinectomy<br>scissors                                                                                           | No recurrence after 1.0 year  | СТ      |
| Ardekian et al. <sup>16</sup>              | Venous    | Excision                                                                                                                         | nm                            | СТ      |
| Nicolai et al. <sup>17</sup>               | Solid     | Excision with combined anterior<br>cranial fossa and tranfacial<br>approaches                                                    | No recurrence after 2.5 years | CT, MRI |
| Nall et al. <sup>18</sup>                  | Venous    | Embolization and excision with a<br>medial maxillectomy, external<br>ethmoidectomy, and<br>cannulation of the lacrimal<br>system | No recurrence after 1.8 year  | СТ      |
| Murono et al. <sup>19</sup>                | Venous    | Excision with a margin of normal nasal mucous membrane                                                                           | nm                            | СТ      |
| Marioni et al. <sup>20</sup>               | Venous    | Excision under local anesthesia<br>with endoscopic control                                                                       | No recurrence after 0.3 year  | nm      |
| Osaki et al. <sup>21</sup>                 | Solid     | Excision                                                                                                                         | No recurrence after 1.3 year  | nm      |
| Wang et al. <sup>22</sup>                  | Solid     | Excision                                                                                                                         | nm                            | nm      |
|                                            | Cavernous | Excision                                                                                                                         | nm                            | nm      |
|                                            | Cavernous | Excision                                                                                                                         | nm                            | nm      |
| Burkhardt and Bejarano <sup>23</sup>       | Solid     | Embolization and excision with endoscopic surgery                                                                                | nm                            | СТ      |
| Chen et al. <sup>24</sup>                  | Venous    | Excision                                                                                                                         | No recurrence after 1.0 year  | СТ      |
| Campelo et al. <sup>25</sup>               | Venous    | Excision with endoscopic surgery                                                                                                 | No recurrence after 1.0 year  | СТ      |
| Tas et al. <sup>26</sup>                   | Solid     | Excision with medial<br>maxillectomy and endoscopic<br>ethmoidectomy                                                             | No recurrence after 1.3 year  | СТ      |

# Table 2 (Continued)

| Reference                                   | Subtype   | Treatment                                                                             | Follow-up                         | Imaging |
|---------------------------------------------|-----------|---------------------------------------------------------------------------------------|-----------------------------------|---------|
| Vafiadis et al. <sup>27</sup>               | Venous    | Excision under local anesthesia<br>through an incision in the<br>gingivolabial sulcus | No recurrence after 2.0 years     | X-rays  |
| He et al. <sup>28</sup>                     | Venous    | Excision with endoscopic high-<br>power laser cauterization                           | No recurrence after 1.0 year      | СТ      |
| Michael and Shah <sup>29</sup>              | Venous    | Excision with endoscopic surgery                                                      | nm                                | СТ      |
| Navarro Júnior et al. <sup>30</sup>         | Venous    | Excision with endoscopic surgery                                                      | nm                                | СТ      |
| Yoon et al. <sup>31</sup>                   | Venous    | Excision                                                                              | nm                                | nm      |
|                                             | Solid     | Excision                                                                              | nm                                | nm      |
|                                             | Solid     | Excision                                                                              | nm                                | nm      |
|                                             | Cavernous | Excision                                                                              | nm                                | СТ      |
|                                             | Cavernous | Excision                                                                              | nm                                | СТ      |
| Arruda et al. <sup>32</sup>                 | Venous    | Excision through an incision in<br>the lateral mucosa of the nasal<br>cavity          | No recurrence after 2.5 years     | СТ      |
| Yi CH et al <sup>33</sup>                   | Venous    | Excision with endoscopic surgery under local anesthesia                               | No recurrence after 0.4 years     | СТ      |
| Burkart and<br>Schoenenberger <sup>34</sup> | Venous    | Excision with endoscopic<br>surgery with a radiofrequency<br>instrument               | No recurrence after 1.0 year      | CT, MRI |
| Varghese et al. <sup>35</sup>               | Solid     | Excision with endoscopic surgery                                                      | No recurrence after 0.5 year      | СТ      |
| Bhandarkar et al. <sup>36</sup>             | Solid     | Excision with endoscopic surgery                                                      | Recurrence after 3.0 years        | СТ      |
| Kim et al. <sup>37</sup>                    | Venous    | Excision with endoscopic surgery                                                      | No recurrence after 1.0 year      | СТ      |
| Agaimy et al. <sup>38</sup>                 | Solid     | Excision                                                                              | No recurrence after 4.3 years     | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 3.6 years     | nm      |
|                                             | Venous    | Excision                                                                              | No recurrence after 2.8 years     | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 2.7 years     | nm      |
|                                             | Cavernous | Excision                                                                              | No recurrence after 2.6 years     | nm      |
|                                             | Venous    | Excision                                                                              | No recurrence after 1.3 year      | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 17.6<br>years | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 6.7 years     | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 13.4 years    | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 9.0 years     | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 4.4 years     | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 3.8 years     | nm      |
|                                             | Cavernous | Excision                                                                              | No recurrence after 2.2 years     | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 1.7 year      | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 1.5 year      | nm      |
|                                             | Solid     | Excision                                                                              | No recurrence after 0.8 year      | nm      |
| Hammedi et al. <sup>39</sup>                | Venous    | Excision                                                                              | nm                                | СТ      |

(Continued)

# Table 2 (Continued)

| Reference                                | Subtype   | Treatment                                                                                   | Follow-up                     | Imaging   |
|------------------------------------------|-----------|---------------------------------------------------------------------------------------------|-------------------------------|-----------|
| Villarreal Patiño et al. <sup>40</sup>   | Venous    | Embolization and excision with endoscopic surgery                                           | No recurrence after 3.0 years | СТ        |
| Lau et al. <sup>41</sup>                 | Cavernous | Excision with endoscopic surgery                                                            | No recurrence after 1.0 year  | СТ        |
| Zhu et al. <sup>42</sup>                 | Solid     | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | Solid     | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | Solid     | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | Solid     | Excision with endoscopic surgery                                                            | nm                            | CT, MRI   |
|                                          | Solid     | Excision with endoscopic surgery                                                            | nm                            | CT, MRI   |
|                                          | Solid     | Excision with endoscopic surgery                                                            | nm                            | СТ        |
| Varadarajan and<br>Justice <sup>43</sup> | Venous    | Excision with endoscopic surgery                                                            | nm                            | СТ        |
| Chen et al. <sup>44</sup>                | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
|                                          | nm        | Excision with endoscopic surgery                                                            | nm                            | СТ        |
| Mathieu et al. <sup>45</sup>             | Solid     | Excision with a surrounding rim<br>of normal nasal mucosa through<br>a subgingival incision | No recurrence after 2.0 years | CT, 3D-CT |
| Khanani et al. <sup>46</sup>             | Venous    | Excision                                                                                    | nm                            | СТ        |
| Drapier et al. <sup>47</sup>             | Venous    | Excision                                                                                    | No recurrence after 1.5 year  | CT, MRI   |
| Lee et al. <sup>48</sup>                 | Cavernous | Excision with endoscopic surgery                                                            | No recurrence after 0.3 year  | CT, MRI   |
| Choi <sup>49</sup>                       | Venous    | Excision with Caldwell-Luc<br>surgery combined endoscopic<br>sinus surgery                  | No recurrence after 2.0 years | CT, MRI   |

| Reference                                    | Subtype   | Treatment                                                                                       | Follow-up                      | Imaging |
|----------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|--------------------------------|---------|
| Apthorp et al. <sup>50</sup>                 | Nm        | Excision with endoscopic<br>surgery with the two-handed<br>technique                            | No recurrence after 0.8 year   | nm      |
| Arora et al. <sup>51</sup>                   | Solid     | Excision with endoscopic surgery with bipolar cautery                                           | nm                             | СТ      |
| Heyman et al. <sup>52</sup>                  | Solid     | Excision with endoscopic surgery                                                                | No recurrence after 0.5 year   | СТ      |
| Ho et al. <sup>53</sup>                      | Venous    | Excision with endoscopic surgery                                                                | No recurrence after 11.0 years | СТ      |
| Nada et al. <sup>54</sup>                    | Venous    | Excision                                                                                        | nm                             | CT, MRI |
| Escamilla<br>Carpintero et al. <sup>55</sup> | Venous    | Excision with endoscopic<br>surgery with a turbinectomy and<br>exploration of the lacrimal duct | No recurrence after 1.0 year   | СТ      |
| D'Aguanno et al. <sup>56</sup>               | Cavernous | Excision with endoscopic surgery                                                                | No recurrence after 1.0 year   | СТ      |
|                                              | Venous    | Excision with endoscopic surgery                                                                | No reucurrence after 0.4 year  | СТ      |
| Noreikaite et al. <sup>57</sup>              | Venous    | Excision with endoscopic surgery                                                                | No recurrence after 7.0 years  | СТ      |
|                                              | Venous    | Excision with endoscopic surgery                                                                | No recurrence after 1.0 year   | СТ      |
| Azhdam et al. <sup>58</sup>                  | nm        | Excision with endoscopic<br>surgery with medial<br>maxillectomy and<br>dacryocystorhinostomy    | nm                             | CT, MRI |

| Table 2 | ! (Continued) |
|---------|---------------|
|---------|---------------|

Abbreviations: 3D, three-dimmensional; CT, computed tomography; MRI, magnetic resonance imaging; nm, not mentioned.

was performed in 4 (4,6%) cases, no cases EBV infection at the single-cell level were detected. The  $K_i$ -67 proliferation index was described in 25 cases (28.7%), showing a mean value of 2%.

Follow-up was reported in 49 cases (56.3%). The mean follow-up period was of 2.7 (range: 0.2 to 17.6) years. Only 1 (0.9%) patient experienced local recurrence after 3 years.

# Discussion

Mesenchymal tumors are often a diagnostic challenge for pathologists. Therefore, the standardization and schematization of the classification of these tumors provided by the 2020 WHO Classification of Soft Tissue Tumors<sup>5</sup> were necessary.

In the 2005 WHO Classification of Head and Neck Tumors,<sup>2</sup>ALM was considered synonymous with leiomyoma, there was a female predilection, and the turbinates were affected more frequently. In the 2017 WHO Classification of Head and Neck Tumors,<sup>3</sup> an equal sex distribution for leiomyoma was described, and ALM was reported as a subtype of leiomyoma. The 2020 WHO Classification of Soft Tissue Tumors<sup>5</sup> considered ALM as a separate entity from leyomioma.

According to this classification, half of ALMs are painful, the overall male-to-female ratio is of  $\sim$  0.7:1, the solid type is significantly more common in women, whereas the venous and cavernous types show a male predominance, and the venous type is reported to be more often involved in the head

and neck region. Angioleiomyoma is included in the group of pericytic tumors, which share a perivascular growth pattern, a variable contractile phenotype, and represent  $\sim 0.2\%$  of all head and neck benign tumors. Angioleiomyoma is a benign entity that manifests mainly in the subcutis or dermis of the extremities (in 89% of the cases).

The incidence of sinonasal ALM is difficult to establish; to the best of our knowledge, only 87 cases of this neoplasm have been described. In the head and neck region, ALM is very rare (8.5% of the cases), in particular in the sinonasal tract, in which the incidence seems to be of ~ 2% of total tumors.<sup>8,9</sup> Malignancy has not been described. The male-tofemale ratio is of ~ 1:1 (46 male cases and 40 female cases), and the mean age of the patients is of 55.6 (range: 15 to 88) years. According to the results of the present review, we should consider ALM of the sinonasal tract as a rare tumor of elderly patients, with a peak in the sixth decade of life and no gender preference.

Macroscopically, sinonasal ALM manifests as a reddish/ pinkish/bluish/brown/gray globular or polypoidal mass, ovoidal or round, soft, elastic, smooth or wrinkled, mainly hypervascular and painless, with a mucous membrane and a slow pattern of growth. According to the findings of the present study, sinonasal ALM is mainly located in the nasal septum, followed by the inferior turbinate and the nasal vestibule; manifestations in other areas of the sinonasal tract are less frequently reported.

| Reference                                   | Actin | Desmin | SMA | MSA | SMMHC | Vimentin | Myoglobin | Calponin | S 100 | Keratin | AACT | CD31 | CD56 | CD34 | ER | PR | HNF-35 | FVIII | HMB45 | H-caldesmon | D2-40 |
|---------------------------------------------|-------|--------|-----|-----|-------|----------|-----------|----------|-------|---------|------|------|------|------|----|----|--------|-------|-------|-------------|-------|
| Schwartzan and<br>Schwartzan <sup>11</sup>  | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Hanna et al. <sup>12</sup>                  | •     | •      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Sawada <sup>13</sup>                        | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Ragbeer and Stone <sup>14</sup>             | •     | +      | +   | •   | •     | +        | +         | •        | -     | Ι       | T    | •    | •    | •    | •  | •  | •      | +     | •     | •           | •     |
| Khan et al. <sup>15</sup>                   | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Ardekian et al. <sup>16</sup>               | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Nicolai et al. <sup>17</sup>                | •     | +      | +   | •   | •     | +        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  |        | •     | •     | •           | •     |
| Nall et al. <sup>18</sup>                   | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Murono et al. <sup>19</sup>                 | •     | •      | +   | •   | •     | +        |           | •        | •     | •       | •    | •    | •    | •    | •  | •  |        | •     | •     | •           | •     |
| Marioni et al. <sup>20</sup>                | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | +    | •    | •    | T  | +  | •      | •     | •     | •           | •     |
| Osaki et al. <sup>21</sup>                  | •     | +      | +   | •   | •     | •        | I         | •        | •     | •       | •    | •    | •    | +    | •  | •  | +      | +     | •     | •           | •     |
| Wang et al. <sup>22</sup>                   | •     | •      | +   | •   | •     | •        | •         | •        | •     | •       | •    | +    | •    | •    | •  | •  |        | •     | •     | •           | •     |
|                                             | •     | •      | +   | •   | •     | •        | •         | •        | •     | •       | •    | +    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
|                                             | •     | •      | +   | •   | •     | •        | •         | •        | •     | •       | •    | +    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Burkhardt and<br>Bejarano <sup>23</sup>     | +     | +      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Chen et al. <sup>24</sup>                   | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | I    | T  | 1  | •      | •     | •     | •           | •     |
| Campelo et al. <sup>25</sup>                | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Tas et al. <sup>26</sup>                    | •     | •      | +   | •   | •     | +        | •         | •        | -     | •       | •    | •    | •    | +    | •  | •  | •      | +     | •     | •           | •     |
| Vafiadis et al. <sup>27</sup>               | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| He et al. <sup>28</sup>                     | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | T  | +  | •      | •     | Ι     | •           | •     |
| Michael and Shah <sup>29</sup>              | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Navarro<br>Júnior et al. <sup>30</sup>      | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Yoon et al. <sup>31</sup>                   | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
|                                             | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
|                                             | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
|                                             | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
|                                             | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Arruda et al. <sup>32</sup>                 | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Yi CH et al <sup>33</sup>                   | •     | •      | +   | •   | •     | •        | •         | •        | •     | •       | •    | +    | •    | •    | •  | •  | •      | •     | I     | •           | •     |
| Burkart and<br>Schoenenberger <sup>34</sup> | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Varghese et al. <sup>35</sup>               | •     | I      | +   | +   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | •  | •  | •      | •     | I     | •           | •     |
| Bhandarkar et al. <sup>36</sup>             | •     | •      | +   | •   | •     | •        | •         | •        | +     | •       | •    | •    | •    | •    | •  | •  | •      | •     | •     | •           | •     |
| Kim et al. <sup>37</sup>                    | •     | +      | +   | •   | •     | +        | •         | •        | •     | •       | •    | •    | •    | •    | T  | I  | •      | •     | •     | •           | •     |

# Table 3 (Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference                        | Actin | Desmin | SMA | MSA | SMMHC | Vimentin | Myoglobin | Calponin | S 100 | Keratin | AACT | CD31 | CD56 | CD34 | H | PR HI | HNF-35 F | FVIII H | HMB45 | H-caldesmon | D2-40 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|--------|-----|-----|-------|----------|-----------|----------|-------|---------|------|------|------|------|---|-------|----------|---------|-------|-------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Agaimy et al. <sup>38</sup>      | •     | +      | +   | •   | •     | •        | •         |          |       | •       | •    | •    | •    | •    |   |       |          | •       |       | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | 1      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | +    | •    |   |       |          |         |       | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | +           | Ţ     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | -    | •    | 1 | •     |          | •       | -     | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | Ι    | •    |   |       |          |         |       | +           | I     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | I      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | +    | •    |   |       |          |         |       | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        |       | •       | •    | •    | +    | •    |   |       |          |         |       | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | +    | •    |   |       |          | •       |       | +           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | +   | •     | •        | •         | •        | 1     | I       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | •      | •   | +   | •     | •        | •         | •        | I     | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          | •       |       |             | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | +   | •   | •     | •        | •         | •        | 1     | I       | •    | •    | •    | 1    |   | -     |          |         |       |             | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | 1      | +   | •   | +     | •        | •         | •        | 1     | •       | •    | •    | •    | •    |   |       |          |         |       |             | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | •      | •   | +   | •     | •        | •         | •        |       | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | +      | •   | +   | •     | •        | •         | •        | •     | I       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imedi et al. <sup>39</sup>       | •     | +      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | -    |   | •     |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rreal<br>ío et al. <sup>40</sup> | •     | +      | +   | •   | •     | •        | •         | •        | 1     | •       | •    | •    | •    | +    |   |       |          |         | -     | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | et al. <sup>41</sup>             | •     | 1      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | 1    |   |       |          |         |       |             | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | et al. <sup>42</sup>             | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | Ι    | •    | I    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | -    | •    | -    |   |       |          | •       | -     | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    |      | •    | 1    |   |       |          |         |       | •           | •     |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |                                  | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | I    | •    | 1    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | I    | •    | I    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | •     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | Ι    | •    | I    | I |       |          |         |       | •           | •     |
| •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       • | darajan and<br>:e <sup>43</sup>  | •     | •      | +   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
| .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . | et al. <sup>44</sup>             | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
| .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         | _     | •           | •     |
| •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       • |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
| .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
| •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       • |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | _ | _     |          |         |       | •           | •     |
| .       .       .       .       .         .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                         |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | _ | _     |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | _ | _     |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | _ | _     |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | _ | _     |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | _ | _     |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    |   |       |          |         |       | •           | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | +     | •      | •   | •   | •     | •        | •         | •        | •     | •       | •    | •    | •    | •    | • |       |          |         |       | •           | •     |

| _             |
|---------------|
| 6             |
| ă             |
| ŝ             |
| Ē             |
| ÷             |
| 5             |
| 5             |
| · · ·         |
| ()            |
| 9             |
| 9             |
| <u>)</u><br>m |
| )<br>M        |
| e 3 ()        |
| ole 3 ((      |
| e 3 ()        |

| Reference                                                                                                                                                                                                                                                             | Actin                            | Desmin                   | SMA       | MSA     | SMMHC       | Vimentin     | Myoglobin    | Calponin    | S 100    | Keratin    | AACT      | CD31       | CD56       | CD34     | ER       | PR      | HNF-35    | FVIII  | HMB45        | H-caldesmon | D2-40     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|-----------|---------|-------------|--------------|--------------|-------------|----------|------------|-----------|------------|------------|----------|----------|---------|-----------|--------|--------------|-------------|-----------|
| Mathieu et al. <sup>45</sup>                                                                                                                                                                                                                                          | •                                | +                        | +         | •       | •           | •            | •            | •           | Ι        | •          | •         | +          | •          | •        | •        | •       | •         | •      | •            | +           | •         |
| Khanani et al. <sup>46</sup>                                                                                                                                                                                                                                          | •                                | •                        | +         | •       | •           | +            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | +           | •         |
| Drapier et al. <sup>47</sup>                                                                                                                                                                                                                                          | •                                | •                        | •         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | -            | +           | •         |
| Lee et al. <sup>48</sup>                                                                                                                                                                                                                                              | •                                | +                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Choi <sup>49</sup>                                                                                                                                                                                                                                                    | •                                | •                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Apthorp et al. <sup>50</sup>                                                                                                                                                                                                                                          | •                                | •                        | •         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Arora et al. <sup>51</sup>                                                                                                                                                                                                                                            | •                                | +                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | I        | •        | •       | •         | •      | •            | +           | •         |
| Heyman et al. <sup>52</sup>                                                                                                                                                                                                                                           | +                                | +                        | •         | •       | •           | •            | •            | +           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Ho et al. <sup>53</sup>                                                                                                                                                                                                                                               | •                                | +                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Nada et al. <sup>54</sup>                                                                                                                                                                                                                                             | •                                | •                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Escamilla<br>Carpintero et al. <sup>55</sup>                                                                                                                                                                                                                          | +                                | •                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | +          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| D'Aguanno et al. <sup>56</sup>                                                                                                                                                                                                                                        | •                                | •                        | +         | +       | •           | •            | •            | •           | Ι        | •          | •         | •          | •          | •        | Ι        | Ι       | •         | •      | -            | •           | •         |
|                                                                                                                                                                                                                                                                       | •                                | •                        | +         | +       | •           | •            | •            | •           | I        | •          | •         | •          | •          | •        | Ι        | I       | •         | •      | I            | •           | •         |
| Noreikaite et al. <sup>57</sup>                                                                                                                                                                                                                                       | •                                | •                        | •         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
|                                                                                                                                                                                                                                                                       | •                                | •                        | +         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Azhdam et al. <sup>58</sup>                                                                                                                                                                                                                                           | •                                | •                        | •         | •       | •           | •            | •            | •           | •        | •          | •         | •          | •          | •        | •        | •       | •         | •      | •            | •           | •         |
| Abbreviations: -, negative; +, positive; •, not indagated; AACT, alpha-1 antichymotrypsin; ER, estrogen receptor; MSA, muscle-specific actin; PR, progesterone receptor; SMA, smooth-muscle actin; SMMHC, smooth-muscle mostlymoscle mostlymoscie. D2-40, podoplanin. | ative; +,<br>D2-40, <sub>F</sub> | positive; •<br>odoplanin | , not inc | dagated | ; AACT, alp | ha-1 antichy | motrypsin; E | R, estrogen | receptoi | r; MSA, mu | iscle-spe | cificactir | ı; PR, pro | gesteror | ie recep | tor; SN | 1A, smoot | h-musc | le actin; SI | MMHC, smoot | :h-muscle |

362 Systematic Review of Angioleiomyoma of the Sinonasal Tract Velletrani et al.

The main differential diagnosis is with myopericytoma, glomus tumor, fibromyoma, leiomyosarcoma, angiofibroma, hemangioma, and angiomyolipoma. Morimoto<sup>10</sup> classified the tumors as follows: solid - when the tumor comprises closely-compacted smooth muscle and abundant blood vessels, which are small and slit-like, the smooth muscle bundles surround the vessels and interdigitate with them; venous - when the tumor lacks compacted smooth muscle bundles and the blood vessels have thick muscular walls of varying size; and cavernous - when the tumor consists of numerous dilated vascular channels and smaller quantities of smooth-muscle bundles, which are difficult to distinguish from the muscular walls of the vessel channels. Considering the total of cases, the solid subtype is the most frequent, while the venous subtype seems to be more frequent in women, and the solid subtype, in men.

Angioleiomyomas classically show positive immunohistochemical markers like actin, SMA, MSA, desmin, vimentin, h-caldesmon, calponin, and negative markers like HMB45, keratin, and S100. It is of note that the only case of sinonasal ALM with S100 positivity reported in the literature is also the only case with local recurrence.<sup>36</sup> About the hormonal aspect, the search for ER and PR shows a heterogeneous attitude among the investigated cases. The same thing can be said for CD31, CD34 and CD56.

Surgical excision is the best treatment choice. To the best of our knowledge, only 1 (1.15%) case of sinonasal ALM experienced recurrence during the follow-up after surgical excision. The longest follow-up was of 17.6 years. No malignant transformations or metastases have been reported. According to the results of the present review, prognosis is excellent after the removal of the tumoral mass.

# **Final Comments**

Angioleiomyoma is a relatively new entry in the classification of soft-tissue tumors classification, and due to its biological and embryological features, it should be considered a distinct tumor entity from leiomyoma. Regarding the sinonasal tract, to the best of our knowledge, only 87 cases of ALM have been described.

The male-to-female ratio of sinonasal ALMs is of ~ 1:1, with a mild male prevalence. The nasal septum is the most frequently affected site, and pain is present in a small portion of cases. As reported in the previous classification,<sup>3</sup> the tumor cells are diffusely and strongly immunoreactive to actin, desmin, h-caldesmon, calponin, and vimentin, and the K<sub>i</sub>-67 index is usually < 5%.

According to the results of the present study, S100 positivity seems to be associated with tumor recurrence, and the most common histological subtype is solid, considering the total of cases, while there is a prevalence of the venous subtype in women and of the solid subtype in men.

Surgical excision is the best treatment choice without additional medical therapies.

The results of the present review confirm the benignity of this tumor and, despite its low incidence, ALM must be considered in the differential diagnosis of any sinonasal mass, especially in the nasal septum.

#### Authors' Contribution

GV and RM conceptualized and designed the study, performed the literature review, critically reviewed and interpreted data, and drafted and revised the manuscript. SDG and ADP critically revised the manuscript.

#### Funding

The present research did not receive any specific grant from funding agencies in the public, commercial, or notfor-profit sectors.

#### **Conflict of Interests**

The authors have no conflict of interests to declare.

### References

- Maesaka A, Keyaki Y, Nakahashi T. Nasal angioleiomyoma and leiomyosarcoma (Report of two cases). Otologia (Fukuoka) 1966; 12:42–47
- 2 Barnes L, Eveson JW, Reichart P, Sidransky D. WHO Classification of Tumours. Pathology and genetics of head and neck tumours. Vol 9. 3rd Edition. IARC, Lyon; 2005.
- 3 El-Naggar A, Chan J, Grandis J, Takata T, Slootweg P. WHO Classification of Head and Neck Tumours. Vol 9. 4th Edition. IARC, Lyon; 2017.
- 4 WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours. Vol 3. 5th Edition. IARC, Lyon; 2020.
- 5 Sbaraglia M, Bellan E, Dei Tos AP. The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives. Pathologica 2021; 113(02):70–84. Doi: 10.32074/1591-951X-213
- 6 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 29;372: n71. PMID: 33782057; PMCID: PMC8005924. doi: Doi: 10.1136/ bmj.n71
- 7 Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z (Editors). Joanna Briggs Institute Reviewer's Manual. The Joanna Briggs Institute, 2017.
- 8 Hachisuga T, Hashimoto H, Enjoji M Angioleiomyoma. A clinicopathologic reappraisal of 562 cases. Cancer. 1984; 1;54(1):126– 30. PMID: 6722737. doi: Doi: 10.1002/1097-0142(19840701) 54:1<126::aid-cncr2820540125>3.0.co;2-f
- 9 Liu Y, Li B, Li L, Liu Y, Wang C, Zha L. Angioleiomyomas in the head and neck: A retrospective clinical and immunohistochemical analysis. Oncol Lett 2014;8(01):241–247. Doi: 10.3892/ol.2014.2124
- 10 Morimoto N. Angiomyoma (vascular leiomyoma): a clinicopathologic study. Kagoshima Daigaku Igaku Zasshi 1973; ((24): 663–683
- 11 Schwartzman J, Schwartzman J. Leiomyoangioma of paranasal sinuses: case report. Laryngoscope 1973;83(11):1856–1858
- 12 Hanna GS, Akosa AB, Ali MH. Vascular leiomyoma of the inferior turbinate-report of a case and review of the literature. J Laryngol Otol 1988;102(12):1159–1160. Doi: 10.1017/s0022215100107595
- 13 Sawada Y. Angioleiomyoma of the nasal cavity. J Oral Maxillofac Surg 1990;48(10):1100–1101. Doi: 10.1016/0278-2391(90)90296-e
- 14 Ragbeer MS, Stone J. Vascular leiomyoma of the nasal cavity: report of a case and review of literature. J Oral Maxillofac Surg 1990;48(10):1113–1117. Doi: 10.1016/0278-2391(90)90300-q
- 15 Khan MHZ, Jones AS, Haqqani MT. Angioleiomyoma of the nasal cavity-report of a case and review of the literature. J Laryngol Otol 1994;108(03):244–246. Doi: 10.1017/S0022215100126416

- 16 Ardekian L, Samet N, Talmi YP, Roth Y, Bendet E, Kronenberg J. Vascular leiomyoma of the nasal septum. Otolaryngol Head Neck Surg 1996;114(06):798–800. Doi: 10.1016/s0194-5998(96) 70104-3
- 17 Nicolai P, Redaelli de Zinis LO, Facchetti F, Maroldi R, Antonelli AR. Craniofacial resection for vascular leiomyoma of the nasal cavity. Am J Otolaryngol 1996;17(05):340–344. Doi: 10.1016/s0196-0709(96)90022-8
- 18 Nall AV, Stringer SP, Baughman RA. Vascular leiomyoma of the superior turbinate: first reported case. Head Neck 1997;19(01): 63–67. Doi: 10.1002/(sici)1097-0347(199701)19:1<63:aidhed12>3.0.co;2-s
- 19 Murono S, Ohmura T, Sugimori S, Furukawa M. Vascular leiomyoma with abundant adipose cells of the nasal cavity. Am J Otolaryngol 1998;19(01):50–53. Doi: 10.1016/s0196-0709(98) 90066-7
- 20 Marioni G, Marchese-Ragona R, Fernandez S, Bruzon J, Marino F, Staffieri A. Progesterone receptor expression in angioleiomyoma of the nasal cavity. Acta Otolaryngol 2002;122(04):408–412. Doi: 10.1080/00016480260000102
- 21 Osaki M, Osaki M, Kodani I, Adachi H, Shibata I, Ito H. Vascular Leiomyoma of the Nasal Cavity: Case Report and Review of the Literature. Yonago Acta Med 2002;45:113–116
- 22 Wang CP, Chang YL, Sheen TS. Vascular leiomyoma of the head and neck. Laryngoscope 2004;114(04):661–665. Doi: 10.1097/ 00005537-200404000-00012
- 23 Burkhardt W, Bejarano K. Leiomioma vascular nasal gigante Informe de un caso y su manejo endoscópico transnasal. Revisión de la literatura. Colomb Med (Cali) 2006;37(04):319–322. Spanish
- 24 Chen CJ, Lai MT, Chen CY, Fang CL. Vascular leiomyoma of the nasal cavity: case report. Chin Med J (Engl). 2007; 20;120(04): 350–2. PMID: 17374292
- 25 Campelo VE, Neves MC, Nakanishi M, Voegels RL. Nasal cavity vascular leiomyoma: case report and literature review. Rev Bras Otorrinolaringol (Engl Ed) 2008;74(01):147–150. Doi: 10.1016/ s1808-8694(15)30766-7
- 26 Tas A, Yagiz R, Öz Puyan F, Koten M, Karasalihoglu AR. Vascular leiomyoma of the nasal cavity and the paranasal sinuses. Turkish Archives of Otolaryngology. 2008;46:315–319. Doi: 10.2399/ tao.05.003
- 27 Vafiadis M, Kantas I, Panopoulou M, Sivridis E, Exarchakos G. Vascular leiomyoma of the nasal vestibule. Case report and literature review. B-ENT 2008;4(02):105–110
- 28 He J, Zhao LN, Jiang ZN, Zhang SZ. Angioleiomyoma of the nasal cavity: a rare cause of epistaxis. Otolaryngol Head Neck Surg 2009;141(05):663–664. Doi: 10.1016/j.otohns.2009.04.003
- 29 Michael RC, Shah S. Angioleiomyoma of the nasal cavity. Indian J Pathol Microbiol 2009;52(03):386–388
- 30 Navarro Júnior CRR, Fonseca AS, Mattos JR, Andrade NA. Angioleiomyoma of the nasal septum. Rev Bras Otorrinolaringol (Engl Ed) 2010;76(05):675–675. Doi: 10.1590/S1808-86942010000500027
- 31 Yoon TM, Yang HC, Choi YD, Lee DH, Lee JK, Lim SC. Vascular leiomyoma in the head and neck region: 11 years experience in one institution. Clin Exp Otorhinolaryngol 2013;6(03):171–175. Doi: 10.3342/ceo.2013.6.3.171
- 32 Arruda MM, Monteiro DY, Fernandes AM, et al. Angioleiomyoma of the nasal cavity. Int Arch Otorhinolaryngol 2014;18(04): 409–411. Doi: 10.1055/s-0033-1364173
- 33 Yi CH, Tabaee A, Wang B. An Elderly Woman With Left-Sided Acute Epistaxis. JAMA Otolaryngol Head Neck Surg 2015;141(11): 1019–1020. Doi: 10.1001/jamaoto.2015.2193
- 34 Burkart S, Schoenenberger U. A Rare Differential Diagnosis of a Nasal Tumor: Case Report and Literature Review. Case Rep Otolaryngol 2015;2015:318620. Doi: 10.1155/2015/318620
- 35 Varghese L, Mathew S, Vijayakumar K. Nasal Angioleiomyoma: An Unusual Cause of Epistaxis. Oman Med J 2015;30(04):303–305. Doi: 10.5001/omj.2015.60

- 36 Bhandarkar AM, Ramaswamy B, Jaiprakash P, Chidambaranathan N. Recurrent angioleiomyoma of the middle turbinate. BMJ Case Rep. 2015; 3;2015:bcr2015210686. PMID: 26240103; PMCID: PMC4533681. doi: Doi: 10.1136/bcr-2015-210686
- 37 Kim AY, Choi MS, Jang DS, Lee HY. A rare case of intranasal vascular leiomyoma. BMJ Case Rep. 2015; 10;2015: bcr2014208247. PMID: 26063111; PMCID: PMC4480081. Doi: 10.1136/bcr-2014-208247
- 38 Agaimy A, Michal M, Thompson LD, Michal M. Angioleiomyoma of the Sinonasal Tract: Analysis of 16 Cases and Review of the Literature. Head Neck Pathol 2015;9(04):463–473. Doi: 10.1007/s12105-015-0636-y
- 39 Hammedi F, Njima M, Ben Abdeljelil N, et al. Vascular Leiomyoma of the Nasal Cavity: An Unusual Tumor. Am J Med Case Rep 2015;3 (01):10–12. Doi: 10.12691/ajmcr-3-1-4
- 40 Villarreal Patiño IM, Pinilla Urraca M, Suarez Massa D, García Hidalgo Y, López-Cortijo C. An exceptional nasal tumor: angioleiomyoma of the nasal cavity. Journal of Head & Neck Physicians and Surgeons. 2015;3(03):128–133
- 41 Lau YW, Vikneswaran T, Tan TY, Tang IP. Sinonasal angioleiomyoma. Med J Malaysia 2016;71(03):154–155
- 42 Zhu G, Xiao D, Sun P. Expression of estrogen and progesterone receptors in angioleiomyoma of the nasal cavity of six patients. Oncol Lett 2016;11(04):2359–2364. Doi: 10.3892/ ol.2016.4230
- 43 Varadarajan VV, Justice JM. Angioleiomyoma of nasal septum: Case report and literature review. Otolaryngol Case Rep. 2016;1 (01):1–4. Doi: 10.1016/j.xocr.2016.10.001
- 44 Chen HH, Wang QY, Zhou SH. Transnasal endoscopic resection of vascular leiomyomas of the nasal septum. J Cancer Res Ther 2016; 12(01):109–111. Doi: 10.4103/0973-1482.150417
- 45 Mathieu T, Verbruggen A, Goovaerts G, Declau F. Vascular leiomyoma of the nasal cavity: case report and literature review. Eur Arch Otorhinolaryngol 2017;274(01):579–583. Doi: 10.1007/ s00405-016-4087-1
- 46 Khanani MJA, Alrasheedi A, Alswaheb JN, Nasser H. Angioleiomyoma of the nasal cavity. An unusual tumor. Int J Adv Res (Indore) 2017;5(01):725–729. Doi: 10.21474/IJAR01/ 2806
- 47 Drapier E, Makeieff M, Dubernard X. Atypical nasal mass. Eur Ann Otorhinolaryngol Head Neck Dis 2019;136(01):51–52. Doi: 10.1016/j.anorl.2018.11.005
- 48 Lee KI, An HG, Hong SR, Kim JY, In SM. Vascular Leiomyoma of the Nasal Floor: The Risk of Misdiagnosis. J Rhinol 2019;26(02): 132–136. Doi: 10.18787/jr.2019.26.2.132
- 49 Choi IS. A Case of Angioleiomyoma of the Maxillary Sinus. Int J Otolaryngol Head And Neck Surg. 2019;08(01):7–12. Doi: 10.4236/ijohns.2019.81002
- 50 Apthorp C, Sharma S, Barrak Aldeerawi H Uncommonly sited rare tumour causing nasal obstruction. BMJ Case Rep. 2020; 9;13(06): e233486. PMID: 32522720; PMCID: PMC7287491. doi: Doi: 10.1136/bcr-2019-233486
- 51 Arora R, Mahindru S, Kathuria K Sinonasal Angioleiomyoma: A Rare Entity. Biomed Hub. 2020; 20;5(2):661–666. PMID: 33564661; PMCID: PMC7841726. doi: Doi: 10.1159/000508299
- 52 Heyman J, Jones LM, Hilton JM, Cooke JS, Viswanathan H, Hayes SM. Angioleiomyoma of the inferior turbinate: a rare cause of isolated facial pain. Ann R Coll Surg Engl 2020;102(02):e20–e22. Doi: 10.1308/rcsann.2019.0086
- 53 Ho CH, Lin HC, Chou CC, Huang HY. Sinonasal Angioleiomyoma. Ear Nose Throat J 2020;99(10):NP109–NP110. Doi: 10.1177/ 0145561319858913
- 54 Nada A, Salik F, Bhat R, Ahsan H. Multimodality Imaging Evaluation of an Uncommon Benign Nasal Cavity Tumor : Case Report on Angioleiomyoma of the Nasomaxillary Junction. Clin Neuroradiol 2021;31(02):525–528. Doi: 10.1007/s00062-020-00968-1

- 55 Escamilla Carpintero Y, Sellares Fabres MT, Blázquez Maña C, Prenafeta Moreno M. Lacrimonasal duct angioleiomyoma. A rare cause of obstruction of the lagrimal drainage system. Acta Otorrinolaringol Esp (Engl Ed) 2021;72(04):262–264. Doi: 10.1016/j. otoeng.2020.03.003 (Engl Ed)
- 56 D'Aguanno V, Ralli M, De Vincentiis L, et al. Sinonasal Angioleiomyoma With Adipocyte Differentiation: Clinicopathologic Study of 2 Cases and Review of the Literature. Ear Nose Throat J 2021; 100(05):NP222–NP224. Doi: 10.1177/0145561319878302
- 57 Noreikaite G, Kim SA, Horcher A. Nasal Septal Angioleiomyoma and Septal Sinus Surgery: A Review of 2 Cases. Ear Nose Throat J 2021;102(02):NP72–NP75. Doi: 10.1177/ 0145561321991322
- 58 Azhdam AM, Wang Y, Douglas RS, Chang EE, Wu AW. Angioleiomyoma of the nasolacrimal duct: case report and literature review. Orbit 2021;41(06):783–785. Doi: 10.1080/01676830. 2021.1933080