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Summary
Objectives: Despite growing enthusiasm surrounding the 
utility of clinical informatics to improve cancer outcomes, data 
availability remains a persistent bottleneck to progress. Difficulty 
combining data with protected health information often limits our 
ability to aggregate larger more representative datasets for anal-
ysis. With the rise of machine learning techniques that require 
increasing amounts of clinical data, these barriers have magni-
fied. Here, we review recent efforts within clinical informatics to 
address issues related to safely sharing cancer data.
Methods: We carried out a narrative review of clinical informatics 
studies related to sharing protected health data within cancer 
studies published from 2018-2022, with a focus on domains 
such as decentralized analytics, homomorphic encryption, and 
common data models. 
Results: Clinical informatics studies that investigated cancer data 
sharing were identified. A particular focus of the search yielded 
studies on decentralized analytics, homomorphic encryption, and 
common data models. Decentralized analytics has been prototyped 
across genomic, imaging, and clinical data with the most advances 
in diagnostic image analysis. Homomorphic encryption was most 
often employed on genomic data and less on imaging and clinical 
data. Common data models primarily involve clinical data from the 
electronic health record. Although all methods have robust research, 
there are limited studies showing wide scale implementation. 
Conclusions: Decentralized analytics, homomorphic encryption, 
and common data models represent promising solutions to im-
prove cancer data sharing. Promising results thus far have been 
limited to smaller settings. Future studies should be focused on 
evaluating the scalability and efficacy of these methods across 
clinical settings of varying resources and expertise.
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1   Introduction
Clinical informatics has transformed cancer 
diagnosis, treatment, and surveillance over 
the past decade. Informatics efforts have al-
lowed oncologists to better understand rare 
tumors by creating larger cohorts of similar 
patients. Additionally, with improvements 
in machine learning techniques, our ability 
to decode the complexity of cancer has 
dramatically improved across different data 
streams, spanning genomics, diagnostic im-
aging, and the electronic health record [1]. 

Despite increasing enthusiasm regard-
ing the role of informatics and machine 
learning in improving our understanding 
of cancer, the availability of clinical data 
remains a persistent bottleneck to progress. 
This problem has become more apparent 
because modern machine learning tech-
niques often rely on larger amounts of 
high-dimensional clinical data. Restric-
tions on sharing protected health informa-
tion have made it increasingly difficult to 
aggregate larger amounts of cancer data 
for study. Moreover, when data sharing 
agreements are put in place, heterogene-
ity across institutions makes the process 
of obtaining usable harmonized data for 
analysis a labor-intensive process. The 
process of data harmonization itself serves 
as an additional barrier, as institutions 
must devote resources to either adjusting 
models to account for differences in data 
or harmonizing data before collaboration.

In response to these challenges, the can-
cer informatics community has attempted to 
build solutions to ease the burden of sharing 
patient-usable data safely between institu-

tions. Here, we present a review of current 
difficulties in sharing clinical cancer data 
and key literature on informatics solutions 
that have shown success. Specifically, we 
focus on decentralized machine learning 
approaches, homomorphic encryption tech-
nology, and common data models.

2   Methods
For this narrative review, we performed a 
search of MEDLINE with a focus on prom-
inent clinical informatics journals, includ-
ing JCO Clinical Cancer Informatics, the 
Journal of the American Informatics Asso-
ciation, Applied Clinical Informatics, BMJ 
Health & Care Informatics, Informatics 
for Health and Social Care, International 
Journal of Medical Informatics, Methods 
of Information in Medicine, and the IMIA 
Yearbook of Medical Informatics. We 
reviewed articles published from 2018 to 
2022 that were relevant to our discussion, 
with an emphasis on articles from the 
past two years. We limited our review to 
studies in three domains: 1) decentralized 
analytics/machine learning, 2) homomor-
phic encryption methods, and 3) common 
data models. Although these domains do 
not cover all methods for data sharing, we 
chose them because of their application 
in cancer informatics and their usefulness 
across different types of data seen in on-
cology research. Finally, we limited our 
review to studies that examined cancer 
across genomic, imaging, and clinical 
data streams.
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3   Barriers to Sharing 
Patient Data
In contrast to sharing non-clinical data 
streams, the sharing of patient-linked health-
care data poses considerably higher risk. Both 
the United States Health Insurance Portability 
and Accountability Act (HIPAA) and the 
European General Data Protection Regulation 
(GDPR) impose strict rules regarding the 
exchange of personally identifiable health-
care data for non-care purposes, including 
research. Due to such restrictions, multi-in-
stitutional efforts to aggregate large patient 
cohorts are often burdensome, time-consum-
ing, and require significant resources [2, 3]. 
Successful examples of large collaborative 
datasets include the AACR-sponsored Project 
GENIE, which provides genomic data with 
limited outcomes data across 18 institutions 
representing 160,000 cancer patients in 6 
countries [4]. Given such difficulties, large 
data collaborations are often limited to a 
small number of like-minded institutions with 
adequate resources and enthusiasm. Although 
such small efforts have value, they risk poten-
tial bias because they lack data representing 
the entire spectrum of cancer patients. This 
is of particular importance given that insti-
tutions and health systems without resources 
to participate in such studies may represent 
different patient populations. Kaushal et al. 
[5] found that a minority of clinical deep 
learning research studies (24%) analyzed 
multiple institutional data. Moreover, they 
found that many of the studies used data from 
only three states within the US (California, 
Massachusetts, and New York), with a paucity 
of studies from the other 47 states.

Patients have expressed concerns re-
garding the privacy of their healthcare data. 
Khullar et al. [6] conducted a survey of pa-
tient perspectives on artificial intelligence 
within healthcare found that over 70% 
of surveyed patients expressed concerns 
about privacy breaches associated with 
healthcare data. This proportion was higher 
among non-white (74% vs. 68%) and older 
respondents (72% vs. 69%). 

Another barrier to sharing patient 
data is a lack of interoperability between 
institutional datasets. Despite increasing 
digitization of healthcare data, there is a 

lack of standardization across many clini-
cal data streams, most notably the clinical 
data within the electronic health record [7]. 
Although the Digital Imaging and Commu-
nications in Medicine (DICOM) provide a 
data standard in diagnostic imaging, differ-
ences in imaging parameters, equipment, 
and protocols among different institutions 
make models trained on multi-institutional 
datasets less likely to generalize across 
different patient populations and regions 
[7]. Additionally, although data standards 
such as FHIR/HL7 have the potential to 
increase interoperability, adoption has been 
lacking [8]. 

4   Anonymization 
Anonymization remains the most common 
way of sharing patient level data that has 
shown some success. Removing identifi-
able features from a dataset mitigates the 
risks associated with sharing data across 
institutions. A main theoretical advantage 
of data anonymization is that it allows 
aggregated data to be shared within the 
public domain for further research studies. 
Successful examples of de-identified public 
cancer data repositories include the Cancer 
Genome Atlas (TCGA) [9] and Cancer Im-
aging Archive (TCIA) [10] which have both 
required considerable investment by the 
US National Institute of Health (NIH). The 
TCGA tiers its data into different layers of 
sensitivity, with only the most general layer 
being openly available to users. However, 
anonymization still presents challenges 
that make data sharing difficult. One of 
the challenges is that true anonymization 
is difficult to achieve, and there is always 
a risk that patient data can be re-identified 
despite best efforts to remove information. 
Second, effectively anonymizing various 
data streams requires significant resources, 
expertise, and time which can be difficult 
for resource limited institutions [11]. Third, 
anonymization may remove important infor-
mation needed for analysis [12]. Lastly, there 
are differing views of what constitutes truly 
anonymized data, often placing different in-
stitutional policies at odds with one another 
when trying to share data [13, 14].

5   Decentralized Analytics
One emerging solution to help mitigate risks 
and resources required to anonymize data for 
shared informatics projects is decentralized 
analysis. Decentralized analysis allows in-
stitutions to keep healthcare data locally but 
conduct informatics analysis collaboratively. 
These solutions have become popular in 
the setting of machine learning techniques 
which have large data requirements. Typical 
decentralized machine learning techniques 
involve sharing some parameters of a model 
during the training process without sharing 
actual protected health information. 

Chang et al. [15] demonstrated the ef-
ficacy of cyclical weight transfers to train 
deep learning models to classify breast 
mammograms. Cyclical weight transfer 
involves multiple institutions transferring 
parameters of a model during the training 
process. Because the model is training on 
data from both institutions intermittently, 
there is less likelihood of overfitting to one 
institutions dataset. The authors found that 
cyclical weight transfer created a model with 
similar accuracy to a model created with all 
data aggregated centrally. The method was 
scalable to 20 hypothetical institutions and 
maintained relatively strong performance 
when one institution had lower quality data 
or imbalanced datasets. One potential disad-
vantage of this method is that performance is 
strongest when all institutions are training at 
the same time. Also, the cycle is dependent 
on the computational speed of each institu-
tion meaning training may be limited by the 
resources of the slowest institution. 

Deist et al. [16] demonstrated one of the 
largest successful algorithms trained in a 
decentralized manner. The authors trained a 
logistic regression model to predict 2-year 
survival based on TNM staging on over 
20,000 non-small cell lung cancer patients 
across five countries. The model which used 
TMN stage as the inputs was trained in a 
distributed manner using the Alternative Di-
rection Method of Multipliers technique. It 
is unclear whether this method is applicable 
to more complex data streams with larger 
numbers of parameters, but nevertheless 
demonstrates the potential of decentralized 
machine learning techniques to aggregate 
large international cohorts of patients. 
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Federated machine learning techniques 
were initially developed in 2015 and represent 
a different method for decentralized machine 
learning [17]. Federated learning algorithms 
rely on distributing copies of a machine learn-
ing algorithm to institutions which house their 
own protected data [18]. Training iterations 
are completed locally and return results to a 
central repository for aggregation. The central 
repository then provides a new global model 
to re-distribute to devices for further training. 
The major benefits of federated learning 
compared to alternative decentralized ma-
chine learning techniques is the flexibility 
to operate when some devices are off-line. 
The disadvantage of federated learning is 
that performance potentially decreases if the 
incorrect aggregation strategy is chosen when 
configuring the global model. 

Federated learning has been shown to be 
effective for cancer image analysis. Recently 
the German Cancer Consortium released a 
Joint Imaging Platform for federated clin-
ical image analysis [19]. The developers 
successfully created a federated learning 
platform which was implemented across 10 
institutions within Germany. The platform is 
currently being implemented to house data 
for six multi-center clinical trials investi-
gating a variety of different cancer types. 
The platform highlights the potential of 
federated learning to improve the efficiency 
of large clinical trials in oncology which 
are frequently multi-institutional in nature. 

Sarma et al. [20] demonstrated the 
utility of federated learning for biomedical 
image segmentation. The authors trained a 
deep learning algorithm which successfully 
segmented prostates on MRI across three in-
stitutions. The federated learning algorithm 
was more generalizable and accurate when 
compared to models trained locally (Dice 
0.812 vs. 0.889, p<.001). 

Federated has also been applied to his-
topathological image analysis. Agbley et 
al. [21] demonstrated the ability to identify 
invasive carcinoma on breast pathology 
specimens across three separate institutions. 
The authors noted that the federated learning 
underperformed when there was significant 
class imbalance between institutions. This 
suggests that federated learning systems 
may not perform well when combining very 
disparate patient populations. 

Lu et al. [22] similarly demonstrated 
federated learning to be an effective method 
for classification of histopathological data. 
The authors were able to train image clas-
sification models to predict survival from 
whole slide images across four different 
institutions. Although the authors found 
federated models did show strong perfor-
mance, the models did underperform when 
compared to centrally trained models. It is 
unclear from the study if the performance 
gap between central and federated models 
would be mitigated if they had a larger 
number of institutions. 

Although federated approaches have most 
often been focused on supervised machine 
learning tasks, it has been shown to also be 
applicable to unsupervised learning algo-
rithms. Bercea et al. [23] developed a frame-
work to train an unsupervised autoencoder to 
identify high grade gliomas on brain MRIs 
across four institutions. The authors found 
their federated approach improved glioma 
identification by 80% compared to locally 
trained models. Specifically, the authors not-
ed that the dramatic increase in performance 
was because each individual institution did 
not possess enough cases to adequately 
train their model. Only through a federated 
approach across multiple institutions were 
the authors able to have a sample size large 
enough to successfully complete their task.

Federated learning using clinical data has 
been shown to be effective in small settings. 
Rajendran et al. [24] demonstrated both 
neural network and logistic regression models 
predicting risk of developing lung cancer from 
electronic health data could successfully be 
trained in a cloud based federated environ-
ment. Notably the authors found that the 
logistic regression model did not show sig-
nificant improvements in performance when 
trained using larger federated data source. In 
contrast the neural network showed significant 
improvements in performance when trained 
on a larger dataset via federated learning. 

Hansen et al. [25] similarly used clinical 
data across three countries to build a cox re-
gression model to identify factors associated 
with larynx cancer outcomes. The federated 
model showed strong discriminatory ability 
with AUCs ranging from 0.67 to 0.77 but did 
not significantly outperform non-federated 
localized cox models. The authors do note 

that the federated model shows slightly 
better separation of risk groups compared 
to localized models. These findings further 
highlight that certain data intensive machine 
learning methods may benefit the most from 
federated environments. 

Federated learning does have known 
challenges. Scalability of federated learning 
infrastructure on cancer problems remains 
understudied. A systematic review of stud-
ies using federated databases completed by 
Zerka et al. [26] found that published studies 
on federated learning involved less than 10 
institutions and often only analyzed a few 
hundred patients. 

One of the largest demonstrations of 
federated learning at scale was published by 
Pati et al. [27] With a group of 71 institutions 
across six continents the authors trained 
a successful auto-segmentation model for 
glioblastomas on brain MRIs. As expected, 
the authors found increased data improved 
overall model performance and made fed-
erated models more robust to potential data 
quality issues at individual institutions. 

Although federated learning does allow 
individual devices to retain protected data, 
they may still be sensitive to privacy threats. 
These threats include attempted extraction 
of training data information from interme-
diate/final models and corrupting models to 
produce inaccurate results [28-30]. Evidence 
suggests that nefarious actors maybe able to 
reconstruct individual data located on devic-
es if given access to model parameters while 
training a federated model [31].

6   Homomorphic Encryption 
Encryption is alternative technique to facility 
patient data sharing which is thought to be less 
sensitive to privacy threats than decentralized 
analytics. Based on the fundamentals of num-
ber theory, encryption techniques transform 
original data into an encoded format [12]. 
Among the most popular encryption tech-
niques within healthcare is homomorphic 
encryption. Homomorphic encryption is a 
specific type of encryption which enables 
primitive mathematical operations (for ex-
ample addition, multiplication) directly on 
encoded data. The advantage of homomorphic 
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encryption techniques is that they offer more 
certain privacy of data. The disadvantage 
is the significant computational resources 
to successfully encrypt medical data. There 
appears to be an efficiency security trade-off 
where the most efficient scalable encryption 
methods are likely less secure [18]. 

Improving the efficiency of homomor-
phic encryption methods remains an area 
of continued research. In 2018, the iDASH 
Privacy and Security Workshop organized 
a special competition track to create secure 
parallel genome wide association studies 
using homomorphic encryption [32]. The 
winning homomorphic encryption solutions 
from Duality Technologies [33] and UCSD 
[32] successfully completed full GWAS for 
1,000 individuals in approximately 4 and 2 
minutes respectively. Both solutions chose 
a similar common encryption framework. 
CKKS/HEAAN appears to be amenable to 
numerical optimization for problems that 
involve machine learning and statistical 
learning. Recently the group from Duality 
Technologies improved upon their iDASH 
winning solution resulting in improved com-
putational efficiency and reduce computer 
memory usage [34]. They also demonstrated 
the scalability of their method on a larger 
dataset of 25,000 individuals. 

Homomorphic encryption on images 
is particularly challenging given difficulty 
encoding visual images. Khilji et al. [35] 
successfully demonstrated the ability to train 
a deep learning classification model using 
homomorphic encryption. The model which 
attempted to diagnose the present of Acute 
Lymphoblastic Leukemia from pathologic 
images had an accuracy of 77.9%. Their 
classification model although somewhat 
accurate did underperform compared to 
non-encrypted models (77.9% vs. 80.0%). 

Homomorphic encryption on clinical data 
has been less studied. Son et al. [36] demon-
strated the ability homomorphic encryption to 
securely train model for breast cancer recur-
rence using clinical data from 13,000 patients. 
Interestingly the authors found performance 
of the model trained using their homomorphic 
encryption method performed equivalently to 
models trained on un-encrypted data. 

Paddock et al. [37] demonstrated the 
feasibility of homomorphic encryption to 
identify exceptional tumor responders within 

a real-word dataset. The authors were able 
to identify all exceptional responders in 21 
months over the course of the simulated 
study. Although the encryption and decryp-
tion process was computationally expensive 
(often requiring hours of computation), the 
authors argue the rate limiting step compares 
favorably to cohort identification and aggre-
gation using traditional methods.

Combining federated learning and homo-
morphic encryption is arguably the safest 
solution to protect health information. Froe-
licher et al. [29] described a novel federated 
learning platform which leverages multipar-
ty homomorphic encryption to enable priva-
cy preservation on distributed datasets. The 
authors showed their platform reproduced 
two published centrally trained models: 1) 
predicting survival after the receipt of immu-
notherapy and 2) predicting HIV viral load 
from genetic data. These findings suggest 
that combining data sharing approaches may 
best ensure patient data security. 

7   Common Data Models
Both decentralized analytics and encryption 
techniques help address privacy concerns 
which limit data sharing, but do not address 
interoperability issues that plague cancer 
informatics projects. Common data mod-
els represent a potential solution to help 
improve data sharing while also addressing 
interoperability issues among institutions 
with different informatics infrastructure. 
Given there exists several different common 
data models which are already in production 
across healthcare, these common data model 
solutions may be the most likely to impact 
clinical practice in the short-term. 

Anonymization is a potential advantage of 
common data models. Common data models 
often are designed with privacy in mind and 
can easily eliminated elements with protected 
health information when sharing across insti-
tutions. Additionally, common data models 
can identify sensitive data elements and 
collectively build data sharing policies which 
allow for tiered access based on privacy risk. 
The use of common data models is not mu-
tually exclusive to decentralized analytics or 
encryption techniques. Combining techniques 

may potentially provide superior methods 
for data sharing. Combining common data 
models with homomorphic encryption has 
been proposed by Rosario et al. [38] The 
authors demonstrated the feasibility to use 
homomorphic encryption and apply it to the 
i2b2 common data model. This allows the po-
tential to share common data model elements 
in a secure fashion or more safely store them 
within a cloud environment. 

One emerging disadvantage to common 
data models is difficulty harmonizing between 
popular common data models [39]. Some 
common data models employ traditional 
relational database design in which each 
table corresponds to a clinical domain (e.g., 
PCORnet CDM). In contrast, other common 
data models use alternative structures. The 
commonly employed i2b2 common data 
model employs a star-schema format which 
leverages one large ‘fact’ table to connect 
various concepts. Similarly, the Observational 
Medical Outcomes Partnership (OMOP) 
common data model uses a hybrid approach 
which blends domain tables and ‘fact’ tables 
[39]. Recognizing the difficulty of harmoniz-
ing common data models, the ONC launched 
a common data model harmonization initia-
tive in collaboration with the FDA, NCI, NIH 
and NLM. The three year project which was 
completed in 2020 developed a common data 
architecture to facilitate interoperability be-
tween four common data models commonly 
used in clinical medicine (Sentinel, PCOR-
Net, i2b2, and OMOP) [40]. Additionally, 
common data models are limited to certain 
data elements and organizational paradigms 
which may not align well with all clinical spe-
cialties. For example, various common data 
models record radiation therapy for cancer 
treatment differently with different degrees 
of detail [41]. Specifically within oncology, 
significant efforts have been made to attempt 
to align current common data models to 
represent cancer data in a way which is most 
relevant to cancer research [42, 43]. Although 
considerable literature has been devoted to 
common data models in healthcare, we will 
review advances in common data models 
specifically within the domain of oncology. 

The OMOP common data model is 
among the most popular common data 
models used in medicine. Developed by 
Observational Health Data Science and In-
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formatics (OHDSI) program, OMOP enables 
analysis of disparate observational databases 
through common terminologies, vocabu-
laries, and coding schemes [44, 43]. There 
exist a number of extensions created by the 
OHDSI Oncology Subgroup and a number 
of independent groups have also attempted 
to create their own ways to extend OMOP 
for cancer informatics research. 

Warner et al. [44] in collaboration with 
OHDSI have made OMOP more useful for 
cancer informatics by extending OMOP to 
better capture the structure of chemothera-
py regimens. Leveraging a HemOnc.org a 
curated website of chemotherapy regimens, 
the authors were able to successfully map 
content from HemOnc.org to a relational 
data model that is compatible with the 
OMOP common data model. In addition to 
increasing the chemotherapy information 
available to OMOP users, the authors also 
created an extension to the OMOP CDM 
to handle episodes of care allowing for the 
capture cancer treatment information with 
temporal information [45]. 

In addition to chemotherapy information 
OHDSI recently released an OMOP Oncol-
ogy Module [43] which extends the OMOP 
CDM and standardized vocabularies to bet-
ter represent cancer diagnoses, treatments, 
and episodes. The module incorporates 
information from seven existing standards 
including the WHO International Classifi-
cation of Diseases for Oncology, HemOnc.
org, North American Association for Central 
Cancer Registries, College of American 
Pathologists Electronic Cancer Checklists, 
Nebraska Medical Clinical Ontology Appli-
cation, National Cancer Institute Thesaurus, 
and the Anatomical Therapeutic Chemical 
Drug classification system. The module was 
successfully pilot tested at six institutions. 
The developers noted that the integration of 
the electronic health record to institutional 
tumor registry information was necessary to 
successfully fill the OMOP module.

Yu et al. [46] demonstrated the potential 
utility of common data models to collect 
adverse events in patients receiving immu-
notherapy. Using the OMOP common data 
model, the authors were able to identify 
ipilimumab induced hypopituitarism four 
months earlier than the FDA Adverse Event 
Reporting System. 

The OMOP common data model has 
also been used to conduct epidemiological 
studies regarding cancer incidence. Lee 
et al. [47] used an OMOP created dataset 
across three hospitals in South Korea to test 
the association between thiazide usage and 
non-melanomatous skin cancer prevalence. 
The investigators were able to leverage 
OMOP common data elements to create 
a cohort of over 600,000 patients over the 
course of years. Such large-scale studies 
would be difficult to complete without the 
use of a common data model to efficiently 
aggregate data elements of interest. 

Despite the popularity of the OMOP com-
mon data model across a variety of clinical 
disciplines [48, 49], one disadvantage for can-
cer informatics research is the lack of genetic 
information included in the standard OMOP 
tables. To address this Shin et al. [50] devel-
oped a genomic common data model which 
allows genomic information to be integrated 
within standard OMOP data tables. The au-
thors showed that successful implementation 
of their proposed common data model allowed 
for successful comparison of genetic data 
between the Cancer Genome Atlas and Ajou 
University Hospital in South Korea. 

Like the OMOP, PCORnet is an alternative 
common data model which was proposed by 
the Patient Center Outcomes Research Insti-
tute to facilitate large-scale patient centered 
research. Carnahan et al. [51] examined the 
utility of PCORnet to evaluate the utilization 
of molecular-guided cancer treatment and 
testing across nine clinical research networks 
and two health plan research networks. The 
authors found traditional billing codes to be 
effective at identifying molecular testing, but 
unable to adequately capture cancer specific 
details regarding the analyte being tested. In a 
sub-analysis, the authors found that PCORnet 
failed to capture all patients who received 
molecular guided therapy and recommended 
linkage of PCORnet with tumor registries to 
improve data capture. 

One consistent challenge across proposed 
common data models remains the lack of 
specificity to clinical oncology. Most common 
data models lack important cancer-specific 
variables (staging, molecular testing, adverse 
events) that are important to cancer infor-
matics researchers. To address growing con-
cerns, the Minimal Common Oncology Data 

Elements (mCODE) initiative was started 
in 2018 [52]. The mCODE initiative which 
is led by the American Society of Clinical 
Oncology (ASCO) attempts to providing 
infrastructure regarding data elements which 
can be used across electronic health records. 
Some critiques of the mCODE initiative are 
the lack of variables capturing smoking and 
drinking status and the ability for it to be 
implemented outside of the United States 
[53]. Although relatively recent, mCODE has 
been created partly with the hope of guiding 
future common data models to include more 
cancer specific data elements [54]. There is 
increasing enthusiasm regarding the use of 
mCODE to help better capture and standard-
ize oncology data. Specifically, CodeX the 
HL7 FHIR accelerator focused on interop-
erability is implementing and testing the use 
of mCODE within specific use cases [52]. 
Use cases include cancer registry reporting, 
EHR derived endpoints for cancer clinical 
trials, cancer clinical trial matching, prior 
authorization, and capturing radiation therapy 
treatment data for cancer patients. 

An alternative to mCODE named OSIRIS 
was recently proposed by the French Institute 
National du Cancer (INCa) [55]. OSIRIS is 
a minimum data set framework composed 
of 67 clinical and 65 omic items which was 
validated on 300 patients across six clinical 
trials across different cancer types. OSIRIS 
is compatible with the HL7 Fast Healthcare 
Interoperability Resources (FHIR) format. 
Features of the OSIRIS common data include 
temporal structure to capture longitudinal 
cancer events, a blend of omics and clinical 
concepts, ability to integrate future data 
streams (e.g., proteomic), and the presence 
international terminologies. 

8   Future Directions and 
Conclusions
Enabling data sharing, whether through use 
of common data models, federated learning, 
or other approaches is key to reaching the 
vision of learning from every cancer patient. 
There have been considerable advances to 
help facilitate data sharing within cancer 
informatics. Decentralized machine learn-
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ing, encryption, and common data models 
represent three promising solutions which 
can help ease the burden of aggregating 
large cancer datasets. Each solution poses 
advantages and limitations which are being 
investigated in parallel. It is likely that no 
one informatics approach will be appropriate 
for all types of data and clinical settings. 
More likely tailored approaches will be 
personalized based on a specific informat-
ics task, resources, and research expertise. 
Additionally, combined solutions may offer 
the safest and most applicable method to 
facilitate collaboration.

Recent regulatory changes have implica-
tions for promoting the sharing of healthcare 
data and advancing research. The Office of 
National Coordinator of Health Information 
Technology (ONC) finalized the 21st Century 
Cures Act and its companion Cures Act 
Final Rule on April 5th, 2021, which aim to 
facilitate data sharing with patients and may 
provide momentum for institutions to create 
infrastructure for safe and effective sharing 
of PHI with researchers [56]. In addition, the 
newly enacted NIH Data Management and 
Sharing Policy requires prospective planning 
for managing and sharing scientific data 
during the application process for NIH-fund-
ed projects, promoting greater transparency 
and data sharing [57]. Such initiatives are 
expected to encourage institutions to invest 
in data sharing technology and infrastruc-
ture at scale. Furthermore, the NIH Cloud 
Platform Interoperability effort represents 
a significant investment by the NIH in pro-
moting infrastructure for democratizing data 
for researchers and is likely to play a larger 
role in promoting data sharing in the future.

Although significant progress has been 
made in prototyping these solutions, there 
are few examples of wide adoption at scale 
within oncology. Current progress was 
frequently limited to organizations with sig-
nificant informatics expertise and resources. 
The next iteration of research in this area will 
likely focus on developing scalable solutions 
which are user-friendly for clinicians with 
varying levels of expertise. Given the current 
prototyped solutions across different data 
types, oncology is a field well positioned 
to develop such scalable solutions and be-
come among the leading clinical fields in 
this arena. 

No conflict of interest has been declared by 
the author(s). 

References 
1. Warner JL, Patt D. Cancer Informatics in 2019: 

Deep Learning Takes Center Stage. Yearb Med 
Inform 2020 Aug;29(01):243–6. doi: 10.1055/s-
0040-1701993.

2. Kuderer NM, Choueiri TK, Shah DP, Shyr 
Y, Rubinstein SM, Rivera DR, et al. Clinical 
impact of COVID-19 on patients with cancer 
(CCC19): a cohort study. The Lancet 2020 
Jun;395(10241):1907–18. doi: 10.1016/S0140-
6736(20)31187-9.

3. Connor M, Paulino AC, Ermoian RP, Hartsell 
WF, Indelicato DJ, Perkins S, et al. Variation in 
Proton Craniospinal Irradiation Practice Pat-
terns in the United States: A Pediatric Proton 
Consortium Registry (PPCR) Study. Int J Radiat 
Oncol 2022 Mar;112(4):901–12. doi: 10.1016/j.
ijrobp.2021.11.016.

4. The AACR Project GENIE Consortium. AACR 
Project GENIE: Powering Precision Medicine 
through an International Consortium. Cancer Dis-
cov 2017 Aug 1;7(8):818–31. doi: 10.1158/2159-
8290.CD-17-0151.

5. Kaushal A, Altman R, Langlotz C. Geographic Dis-
tribution of US Cohorts Used to Train Deep Learn-
ing Algorithms. JAMA 2020 Sep 22;324(12):1212. 
doi: 10.1001/jama.2020.12067.

6. Khullar D, Casalino LP, Qian Y, Lu Y, Krumholz 
HM, Aneja S. Perspectives of Patients About Ar-
tificial Intelligence in Health Care. JAMA Netw 
Open 2022 May 4;5(5):e2210309. doi: 10.1001/
jamanetworkopen.2022.10309.

7. Adnan M, Kalra S, Cresswell JC, Taylor GW, 
Tizhoosh HR. Federated learning and differential 
privacy for medical image analysis. Sci Rep 2022 
Feb 4;12(1):1953. doi: 10.1038/s41598-022-05539-7.

8. Vorisek CN, Lehne M, Klopfenstein SAI, Mayer 
PJ, Bartschke A, Haese T, et al. Fast Healthcare 
Interoperability Resources (FHIR) for Interop-
erability in Health Research: Systematic Review. 
JMIR Med Inform 2022 Jul 19;10(7):e35724. doi: 
10.2196/35724.

9. The Cancer Genome Atlas Research Network; 
Weinstein JN, Collisson EA, Mills GB, Shaw 
KRM, Ozenberger BA, Ellrott K, et al. The Cancer 
Genome Atlas Pan-Cancer analysis project. Nat 
Genet 2013 Oct;45(10):1113–20. doi: 10.1038/
ng.2764.

10. Clark K, Vendt B, Smith K, Freymann J, Kirby 
J, Koppel P, et al. The Cancer Imaging Archive 
(TCIA): Maintaining and Operating a Public 
Information Repository. J Digit Imaging 2013 
Dec;26(6):1045–57. doi: 10.1007/s10278-013-
9622-7.

11. Zhang A, Xing L, Zou J, Wu JC. Shifting machine 
learning for healthcare from development to de-
ployment and from models to data. Nat Biomed 
Eng 2022 Jul 4;6(12):1330–45. doi: 10.1038/
s41551-022-00898-y.

12. Bonomi L, Huang Y, Ohno-Machado, L. Privacy 

challenges and research opportunities for genomic 
data sharing. Nat Genet 2020 Jul;52(7):646–54. 
doi: 10.1038/s41588-020-0651-0.

13. Aneja S, Chang E, Omuro A. Applications of 
artificial intelligence in neuro-oncology. Curr 
Opin Neurol 2019 Dec;32(6):850–6. doi: 10.1097/
WCO.0000000000000761.

14. Thompson RF, Valdes G, Fuller CD, Carpenter 
CM, Morin O, Aneja S, et al. Artificial Intelligence 
in Radiation Oncology Imaging. Int J Radiat 
Oncol 2018 Nov;102(4):1159–61. doi: 10.1016/j.
ijrobp.2018.05.070.

15. Chang K, Balachandar N, Lam C, Yi D, Brown J, 
Beers A, et al. Distributed deep learning networks 
among institutions for medical imaging. J Am 
Med Inform Assoc 2018 Aug 1;25(8):945–54. doi: 
10.1093/jamia/ocy017.

16. Deist TM, Dankers FJWM, Ojha P, Scott 
Marshall M, Janssen T, Faivre-Finn C, et al. 
Distributed learning on 20 000+ lung cancer 
patients – The Personal Health Train. Radiother 
Oncol 2020 Mar;144:189–200. doi: 10.1016/j.
radonc.2019.11.019.

17. Konečný J, McMahan B, Ramage D. Federated 
Optimization:Distributed Optimization Beyond 
the Datacenter. arXiv; 2015 [cited 2023 Mar 29]. 
[Available from: http://arxiv.org/abs/1511.03575]

18. Kaissis GA, Makowski MR, Rückert D, Braren RF. 
Secure, privacy-preserving and federated machine 
learning in medical imaging. Nat Mach Intell 2020 
Jun 8;2(6):305–11. doi: 10.1038/s42256-020-0186-1

19. Scherer J, Nolden M, Kleesiek J, Metzger J, Kades 
K, Schneider V, et al. Joint Imaging Platform for 
Federated Clinical Data Analytics. JCO Clin Can-
cer Inform 2020 Nov;(4):1027–38. doi: 10.1200/
CCI.20.00045.

20. Sarma KV, Harmon S, Sanford T, Roth HR, Xu Z, 
Tetreault J, et al. Federated learning improves site 
performance in multicenter deep learning without 
data sharing. J Am Med Inform Assoc 2021 Jun 
12;28(6):1259–64. doi: 10.1093/jamia/ocaa341.

21. Agbley BLY, Li J, Hossin MA, Nneji GU, Jackson 
J, Monday HN, et al. Federated Learning-Based 
Detection of Invasive Carcinoma of No Special 
Type with Histopathological Images. Diagnostics 
2022 Jul 9;12(7):1669. doi: 10.3390/diagnos-
tics12071669.

22. Lu MY, Chen RJ, Kong D, Lipkova J, Singh R, 
Williamson DFK, et al. Federated learning for 
computational pathology on gigapixel whole slide 
images. Med Image Anal 2022 Feb;76:102298. 
doi: 10.1016/j.media.2021.102298.

23. Bercea CI, Wiestler B, Rueckert D, Albarqouni S. 
Federated disentangled representation learning for 
unsupervised brain anomaly detection. Nat Mach 
Intell 2022 Aug 25;4(8):685–95. doi: 10.1038/
s42256-022-00515-2.

24. Rajendran S, Obeid JS, Binol H, D Agostino R, 
Foley K, Zhang W, et al. Cloud-Based Federated 
Learning Implementation Across Medical Centers. 
JCO Clin Cancer Inform 2021 Dec;(5):1–11. doi: 
10.1200/CCI.20.00060.

25. Hansen CR, Price G, Field M, Sarup N, Zukaus-
kaite R, Johansen J, et al. Larynx cancer survival 
model developed through open-source federated 
learning. Radiother Oncol 2022 Nov;176:179–86. 
doi: 10.1016/j.radonc.2022.09.023.

26. Zerka F, Barakat S, Walsh S, Bogowicz M, Leije-



110

IMIA Yearbook of Medical Informatics 2023

Aneja et al

naar RTH, Jochems A, et al. Systematic Review of 
Privacy-Preserving Distributed Machine Learning 
From Federated Databases in Health Care. JCO 
Clin Cancer Inform 2020 Nov;(4):184–200. doi: 
10.1200/CCI.19.00047.

27. Pati S, Baid U, Edwards B, Sheller M, Wang SH, 
Reina GA, et al. Federated learning enables big 
data for rare cancer boundary detection. Nat Com-
mun. 2022; Nat Commun 2022 Dec 5;13(1):7346. 
doi: 10.1038/s41467-022-33407-5.

28. Nasr M, Shokri R, Houmansadr A. Comprehensive 
Privacy Analysis of Deep Learning: Passive and 
Active White-box Inference Attacks against Cen-
tralized and Federated Learning. In: 2019 IEEE 
Symposium on Security and Privacy (SP). San 
Francisco, CA, USA: IEEE; 2019 [cited 2023 Jan 
29]. p. 739–53. [Available from: https://ieeexplore.
ieee.org/document/8835245/].

29. Froelicher D, Troncoso-Pastoriza JR, Raisaro JL, 
Cuendet MA, Sousa JS, Cho H, et al. Truly pri-
vacy-preserving federated analytics for precision 
medicine with multiparty homomorphic encryp-
tion. Nat Commun 2021 Oct 11;12(1):5910. doi: 
10.1038/s41467-021-25972-y.

30. Joel MZ, Umrao S, Chang E, Choi R, Yang DX, 
Duncan JS, et al. Using Adversarial Images to 
Assess the Robustness of Deep Learning Models 
Trained on Diagnostic Images in Oncology. JCO 
Clin Cancer Inform 2022 May;(6):e2100170. doi: 
10.1200/CCI.21.00170.

31. Kairouz P, McMahan HB, Avent B, Bellet A, Ben-
nis M, Nitin Bhagoji A, et al. Advances and Open 
Problems in Federated Learning. Found Trends® 
Mach Learn 2021;14(1–2):1–210. 

32. Kuo TT, Jiang X, Tang H, Wang X, Bath T, Bu D, 
et al. iDASH secure genome analysis competition 
2018: blockchain genomic data access logging, 
homomorphic encryption on GWAS, and DNA 
segment searching. BMC Med Genomics 2020 
Jul;13(S7):98, s12920-020-0715–0. doi: 10.1186/
s12920-020-0715-0.

33. Blatt M, Gusev A, Polyakov Y, Rohloff K, Vaikun-
tanathan V. Optimized homomorphic encryption 
solution for secure genome-wide association 
studies. BMC Med Genomics 2020 Jul;13(S7):83. 
doi: 10.1186/s12920-020-0719-9.

34. Blatt M, Gusev A, Polyakov Y, Goldwasser S. Se-
cure large-scale genome-wide association studies 
using homomorphic encryption. Proc Natl Acad 
Sci 2020 May 26;117(21):11608–13. doi: 10.1073/
pnas.1918257117.

35. Khilji IQ, Saha K, Amin J, Iqbal M. Application of 
Homomorphic Encryption on Neural Network in 
Prediction of Acute Lymphoid Leukemia. Int J Adv 
Comput Sci Appl 2020 [cited 2023 Jan 26];11(6). 
[Available from: http://thesai.org/Publications/
ViewPaper?Volume=11&Issue=6&Code=I-
JACSA&SerialNo=46].

36. Son Y, Han K, Lee YS, Yu J, Im YH, Shin SY. Priva-
cy-preserving breast cancer recurrence prediction 
based on homomorphic encryption and secure two 
party computation. Vijayakumar P, editor. PLoS 
One 2021 Dec 20;16(12):e0260681. doi: 10.1371/
journal.pone.0260681.

37. Paddock S, Abedtash H, Zummo J, Thomas 
S. Proof-of-concept study: Homomorphically 
encrypted data can support real-time learning in 
personalized cancer medicine. BMC Med Inform 
Decis Mak 2019 Dec;19(1):255. doi: 10.1186/
s12911-019-0983-9.

38. Raisaro JL, Klann JG, Wagholikar KB, Estiri H, 
Hubaux JP, Murphy SN. Feasibility of Homomor-
phic Encryption for Sharing I2B2 Aggregate-Level 
Data in the Cloud. AMIA Jt Summits Transl Sci 
Proc 2018 May 18;2017:176-85.

39. Klann JG, Joss MAH, Embree K, Murphy SN. 
Data model harmonization for the All Of Us 
Research Program: Transforming i2b2 data into 
the OMOP common data model. PLoS One 2019 
Feb 19;14(2):e0212463. doi: 10.1371/journal.
pone.0212463.

40. Common Data Model Harmonization Project FInal 
Report. 2020 Aug. [Available from : https://aspe.
hhs.gov/sites/default/files/private/pdf/259016/
CDMH-Final-Report-14August2020.pdf].

41. Hayman JA, Dekker A, Feng M, Keole SR, McNutt 
TR, Machtay M, et al. Minimum Data Elements 
for Radiation Oncology: An American Society for 
Radiation Oncology Consensus Paper. Pract Radiat 
Oncol 2019 Nov;9(6):395–401. doi: 10.1016/j.
prro.2019.07.017.

42. Corley DA, Feigelson HS, Lieu TA, McGlynn 
EA. Building Data Infrastructure to Evaluate and 
Improve Quality: PCORnet. J Oncol Pract 2015 
May;11(3):204–6. doi: 10.1200/JOP.2014.003194.

43. Belenkaya R, Gurley MJ, Golozar A, Dymshyts 
D, Miller RT, Williams AE, et al. Extending the 
OMOP Common Data Model and Standardized 
Vocabularies to Support Observational Can-
cer Research. JCO Clin Cancer Inform 2021 
Dec;(5):12–20. doi: 10.1200/CCI.20.00079.

44. Warner JL, Dymshyts D, Reich CG, Gurley MJ, 
Hochheiser H, Moldwin ZH, et al. HemOnc: A 
new standard vocabulary for chemotherapy reg-
imen representation in the OMOP common data 
model. J Biomed Inform 2019 Aug;96:103239. 
doi: 10.1016/j.jbi.2019.103239.

45. Jeon H, You SC, Park J, Park RW. Conversion of 
Diagnosis and Chemotherapy Data in Electronic 
Health Records to Episode-based Oncology 
Extension of OMOP-CDM. [Available from : 
https://www.ohdsi.org/2019-us-symposium-show-
case-12/].

46. Yu Y, Ruddy KJ, Wen A, Zong N, Chen J, Shah 
ND, et al. Integrating Electronic Health Record 
Data into the ADEpedia-on-OHDSI Platform for 
Improved Signal Detection: A Case Study of Im-
mune-related Adverse Events. AMIA Jt Summits 
Transl Sci Proc 2020 May 30;2020:710-719.

47. Lee SM, Kim K, Yoon J, Park SK, Moon S, Lee SE, 
et al. Association between Use of Hydrochlorothi-
azide and Nonmelanoma Skin Cancer: Common 
Data Model Cohort Study in Asian Population. J 
Clin Med 2020 Sep 9;9(9):2910. doi: 10.3390/
jcm9092910.

48. Gruendner J, Schwachhofer T, Sippl P, Wolf N, 
Erpenbeck M, Gulden C, et al. KETOS: Clinical 
decision support and machine learning as a service 

– A training and deployment platform based on 
Docker, OMOP-CDM, and FHIR Web Services. 
PLoS One 2019 Oct 3;14(10):e0223010. doi: 
10.1371/journal.pone.0223010.

49. Papez V, Moinat M, Payralbe S, Asselbergs FW, 
Lumbers RT, Hemingway H, et al. Transforming 
and evaluating electronic health record disease 
phenotyping algorithms using the OMOP common 
data model: a case study in heart failure. JAMIA 
Open 2021 Jul 31;4(3):ooab001. doi: 10.1093/
jamiaopen/ooab001.

50. Shin SJ, You SC, Park YR, Roh J, Kim JH, Haam 
S, et al. Genomic Common Data Model for Seam-
less Interoperation of Biomedical Data in Clinical 
Practice: Retrospective Study. J Med Internet Res 
2019 Mar 26;21(3):e13249. doi: 10.2196/13249.

51. Carnahan RM, Waitman LR, Charlton ME, Schro-
eder MC, Bossler AD, Campbell WS, et al. Explo-
ration of PCORnet Data Resources for Assessing 
Use of Molecular-Guided Cancer Treatment. JCO 
Clin Cancer Inform 2020 Nov;(4):724–35. doi: 
10.1200/CCI.19.00142.

52. Osterman TJ, Terry M, Miller RS. Improving 
Cancer Data Interoperability: The Promise of 
the Minimal Common Oncology Data Elements 
(mCODE) Initiative. JCO Clin Cancer Inform 2020 
Nov;(4):993–1001. doi: 10.1200/CCI.20.00059.

53. Chen J, Chiang Y. Applying the Minimal Com-
mon Oncology Data Elements (mCODE) to the 
Asia-Pacific Region. JCO Clin Cancer Inform 
2021 Dec;(5):252–3. doi: 10.1200/CCI.20.00181.

54. Potter D, Brothers R, Kolacevski A, Koskimaki 
JE, McNutt A, Miller RS, et al. Development 
of CancerLinQ, a Health Information Learning 
Platform From Multiple Electronic Health Record 
Systems to Support Improved Quality of Care. 
JCO Clin Cancer Inform 2020 Nov;(4):929–37. 
doi: 10.1200/CCI.20.00064.

55. Guérin J, Laizet Y, Le Texier V, Chanas L, Rance 
B, Koeppel F, et al. OSIRIS: A Minimum Data Set 
for Data Sharing and Interoperability in Oncology. 
JCO Clin Cancer Inform 2021 Dec;(5):256–65. 
doi: 10.1200/CCI.20.00094.

56. Everson J, Patel V, Adler-Milstein J. Information 
blocking remains prevalent at the start of 21st 
Century Cures Act: results from a survey of health 
information exchange organizations. J Am Med 
Inform Assoc 2021 Mar 18;28(4):727–32. doi: 
10.1093/jamia/ocaa323.

57. Kozlov, M. NIH issues a seismic mandate: share 
data publicly. Nature. 2022 Feb 24;602(7898):558–
9. doi: 10.1038/d41586-022-00402-1.

Correspondence to:
Dr. Sanjay Aneja
Department of Therapeutic Radiology
Yale School of Medicine
330 Cedar Street, CB326
New Haven, CT 06510
USA
E-mail: sanjay.aneja@yale.edu
Tel + 1 203 200 2000


