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Summary
Background: A significant portion of individuals in the United 
States and worldwide experience diseases related to or driven by 
diet. As research surrounding user-centered design and the micro-
biome grows, movement of the spectrum of translational science 
from bench to bedside for improvement of human health through 
nutrition becomes more accessible. In this literature survey, we 
examined recent literature examining informatics research at the 
interface of nutrition and the microbiome. 
Objectives: The objective of this survey was to synthesize recent 
literature describing how technology is being applied to under-
stand health at the interface of nutrition and the microbiome 
focusing on the perspective of the consumer.
Methods: A survey of the literature published between January 
1, 2021 and October 10, 2022 was performed using the PubMed 
database and resulting literature was evaluated against inclusion 
and exclusion criteria. 
Results: A total of 139 papers were retrieved and evaluated 
against inclusion and exclusion criteria. After evaluation, 45 
papers were reviewed in depth revealing four major themes: (1) 
microbiome and diet, (2) usability,(3) reproducibility and rigor, 
and (4) precision medicine and precision nutrition.

1   Introduction
The relationship between dietary patterns 
and the microbiome has surfaced as a critical 
factor in management of human health, in-
cluding prevention and treatment of diseases 
including obesity [1-3], type 2 diabetes 
(T2D) [2, 4], Inflammatory Bowel Disease 
(IBD) [5, 6], and more. As research moves 
towards precision nutrition as a means to 
mitigate increasing rates of diet-driven dis-
ease, many challenges have come into view. 

Conclusions: A review of the relationships between current 
literature on technology, nutrition and the microbiome, and 
self-management of dietary patterns was performed. Major 
themes that emerged from this survey revealed exciting new 
horizons for consumer management of diet and disease, as well 
as progress towards elucidating the relationship between diet, the 
microbiome, and health outcomes. The survey revealed continu-
ing interest in the study of diet-related disease and the micro-
biome and acknowledgement of needs for data re-use, sharing, 
and unbiased and rigorous measurement of the microbiome. The 
literature also showed trends toward enhancing the usability of 
digital interventions to support consumer health and home man-
agement, and consensus building around how precision medicine 
and precision nutrition may be applied in the future to improve 
human health outcomes and prevent diet-related disease.
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Diet is not the only factor influencing rising 
rates of obesity and T2D. Recent literature 
suggests that factors such as sleep patterns 
[7], access to food [8], and time available for 
food preparation in the home [9] also play a 
role, for example.

Consumers in the United States face chal-
lenges when providing a nutritious diet for 
themselves and their households, including, 
but not limited to, low nutrition literacy, food 
costs, food waste, supply chain shortages, 
lack of time to prepare meals, and food ac-

cess. These challenges translate to increased 
risk for personal health problems as well as 
increased burden on the healthcare system 
over time, with diet-driven disease account-
ing for an estimated 20% of healthcare costs 
in the United States [10]. 

Consumers are largely responsible for 
the management of nutrition and dietary 
choices in their own lives and households. 
Even when access to health care providers is 
available, most primary care physicians have 
limited time to discuss nutrition with their 
patients in depth [11]. Existing nutrition re-
search has reinforced the importance of con-
sumer understanding of food composition, 
preparation, access, and dietary behaviors 
for prevention, management, and treatment 
of diet-driven diseases [12-20]. To this end, 
there are several digital health applications 
designed to support the consumer in mak-
ing nutritious food choices and preparing 
nutritious meals for themselves and their 
households. The effectiveness of a digital 
application is tied not only to its accuracy 
and quality, but also the application’s ability 
to engage a consumer in a consistent manner 
[21, 22]. Therefore, the impacts of digital 
health interventions aimed at behavioral 
modifications in diet, physical activity, sleep, 
or wellness are directly tied to consumer 
adoption and consistent use [23, 24]. The re-
search described in this brief year-in-review 
survey focuses on the design and develop-
ment of tools for self-management in an out-
patient or community setting. The research 
highlighted recognizes both the challenges 
of and needs for self-management tools that 
support consumer use and engagement, as 
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well as enhanced rigor when understanding 
mechanisms that influence our diet, such as 
the microbiome. This survey aims to provide 
a means for acknowledgement and under-
standing of the breadth of relationships and 
knowledge needed to address diet-related 
disease from an interdisciplinary informatics 
perspective. 

The diet, the microbiome, and consumer 
behavior are intrinsically linked. The aim of 
this survey was to synthesize recent literature 
describing how technology is being applied 
to understand health at the interface of nu-
trition and the microbiome, with a special 
focus on the perspective of the consumer, 
as shown in Figure 1.

2   Methods
A survey of the literature published between 
January 1, 2021, and October 10, 2022 was 
performed using the PubMed database. The 
search was performed exactly as written 
below using the exact query provided: 

(“nutrition” AND “microbiome” 
AND “informatics”) OR
(“consumer health informat-
ics” AND “nutrition”) OR 
(“consumer health” AND “infor-
matics” AND “nutrition”) OR 
( “ u s e r  e x p e r i e n c e ” 
A N D  “ n u t r i t i o n ” )  O R  
(“accessibility” AND “nutri-
tion” AND “microbiome”) OR 
( “ h e a l t h  i n f o r m a t -
ics” AND “microbiome”) OR 
(“consumer health” AND “mi-
crobiome”)

All results from the search above were 
downloaded as a comma-separated values 
(csv) f ile; after checking for duplicate 
articles, a total of 139 total papers were 
found. Inclusion and exclusion criteria 
(Table 1) were formed around identifying 
recent literature that focused on the inter-
section of diet and the microbiome from 
the perspective of a consumer or a patient 
managing diet-driven disease at home. For 

example, diet-driven interventions that were 
self-managed applied in a patient popu-
lation would be included, but diet-driven 
interventions applied to a patient population 
requiring majority clinical involvement or 
surgical interventions were excluded. Only 
studies describing human data in whole or 
in part (i.e., studies including data from 
mouse and human) were included. 

Articles were screened against these 
inclusion and exclusion criteria. A total of 
45 papers were included in the final survey. 
A total of 39 of the 45 papers (86.7%) 
included in the final survey were available 
freely on PubMed Central and the remain-
ing papers were access through institutional 
access or interlibrary loan. This survey does 
not reflect a comprehensive review of the 
literature but aims to identify emerging 
themes and trends published in PubMed 
over the past year on this topic. The citations 
for the 45 papers and their major theme 
classifications are listed in Table 2, below. 
Table 2 reports major themes found in the 
survey, composition, and references for 
papers examined for each theme.

Fig. 1   A high-level overview of themes and topics covered in this survey. The concept of dietary patterns, impact on the gut microbiome, and impact of literature reviewed on precision medicine and nutrition is inclusive of 
multiple disciplines, including health informatics and bioinformatics.
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In this context, “usability” refers to the 
ability of a product to be used by a consumer. 
A more thorough explanation on usability is 
well defined by the International Organiza-
tion for Standardization (ISO) [68].

3   Results
A total of four major themes were identified 
in the literature and synthesized by KC, each 
with its own emerging subthemes: (1) Micro-
biome and Diet-driven Disease, (2) Usability 

and Accessibility of Consumer Health Tools, 
(3) Reproducibility and Rigor of Computa-
tional Analysis in the Microbiome, and (4) 
Precision Medicine and Precision Nutrition.

3.1   Microbiome and Diet-driven 
Disease
Microbiome. With decreasing costs of mi-
crobiome sequencing as well as increased 
interest in the impact of the microbiome on 
health, the literature and data availability on 
this topic is expected to grow. The literature 

in this review circled around diet-driven 
disease with major public health implica-
tions: obesity/overweight, T2D, COVID-19, 
Irritable Bowel Syndrome (IBS), Irritable 
Bowel Disease (IBD), and food allergies/
intolerance, among others. The literature on 
the microbiome and diet also focused on pre-
natal health (gestational diabetes) and infant 
health. Notable subthemes observed in this 
research include (1) continued interest in the 
impact of singular, short-term interventions 
on microbiome composition, (2) prolifera-
tion of smaller studies on the microbiome in 
diet-related disease, and (3) implicit need for 
reliable aggregation and analysis of micro-
biome data to ensure replicability and rigor 
when applied in a larger human population.

Diet-driven Disease. Most studies described 
in this survey capture data in a post-COVID 
world. It is expected that the COVID-19 
pandemic has influenced the gut microbiome 
due to rapid changes in physical activity, 
diet, access to food, and exposure to one’s 
community [39] via mechanisms such as 
lockdowns, social distancing, isolation 
protocols, and quarantines. One retrospec-
tive study of 3,055 16s rRNA microbiome 
datasets across 12 countries aimed to find 
any population level changes associated 
with the COVID-19 pandemic [27]. Au-
thors separated microbiome data into two 
groups: countries with higher COVID-19 
hospitalization rates and countries with 
lower COVID-19 hospitalization rates [27]. 
Diversity in bacterial abundance (measured 
by Shannon’s alpha) was higher in countries 
with “high” COVID-19 hospitalizations; this 
difference was statistically significant [27]. It 
is possible to speculate on reasons why a re-
lationship between microbiome diversity and 
COVID-19 hospitalization might be found. 
Research outside this survey found evidence 
that hospitalization rates vary due to differ-
ences in diet, physical activity, alcohol and 
tobacco use, and other behaviors [69-71], 
although this evidence may be conflicting.

Irritable Bowel Syndrome (IBS). The po-
tential impact of supporting patients living 
with gastrointestinal disease is large – for 
example, an expected 25-45 million individ-
uals suffer from Irritable Bowel Syndrome 
(IBS) in the United States [72]. Four studies 

Table 1   Inclusion and exclusion criteria used. A table describing the inclusion (top) and exclusion (bottom) criteria used when examining the 
literature included in this manuscript. Table 1. Inclusion and exclusion criteria used. A table describing the inclusion (top) and exclusion (bottom) 
criteria used when examining the literature included in this manuscript.

Inclusion Criteria

Date

Database

Organism

Article Type

Focus

Location

Data Type

Exclusion Criteria

Focus

Transparency

Published between January 1, 2021, and October 10, 2022

PubMed database searched

Only include articles focusing on or including human studies/data

Peer Reviewed Original Research, Review Articles only included
Review papers were included to capture consensus on future trends and current challenges 

Microbiome, disease, diet OR
Usability and feasibility of digital diet self-management OR
Computational rigor of microbiome analyses OR
Consumer-based digital health/diet interventions

Studies from any location were included

Studies using 16s rRNA or metagenomic shotgun sequencing of fecal microbiome data included

Excluded research with a majority focus on singular dietary intervention of commercial sup-
plements OR focus on non-self-managed interventions (i.e., surgical or clinical interventions)

Excluded research with unclear conflict of interest statements OR lack of clarity in 
performance of peer review OR concerns regarding quality of experimental design

Table 2   Survey Themes.

Major Theme

Microbiome and Diet

Usability

Reproducibility and Rigor

Precision Medicine and Precision Nutrition

TOTAL

Papers (#)

21

14

6

4

45

Papers (%)

46.67%
31.11%
13.33%
8.89%

100%

References 

[25-45]

[23,24,46-57]

[58-63]

[64-67]
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examined means to reduce symptoms for 
individuals living with IBS through dietary 
management. In one study an oral probiotic 
was trialed (n=15 adults) with IBS over a 
period of 4 or 8 weeks [30]. The probiotic, 
called VSL#3®, contains bacteria from the 
genus Lactobacillus, Bifidobacterium, 
and Streptococcus [73]. Microbiome 
composition studies from before and 
after the study period detected bacte-
ria from all three genera in the group 
treated with the probiotic, but found 
no difference in abundance before and 
after treatment [30]. Despite this, par-
ticipants in the probiotic group report-
ed reduction in pain and symptoms 
[30]. Another study of the gut microbiome 
collected from n=34 individuals diagnosed 
with IBS and receiving Cognitive Behavioral 
Therapy (CBT) as treatment was performed 
[32]. Interestingly, significant differences 
in microbiome composition were found 
between individuals who responded to CBT 
treatment versus treatment non-responders 
[32]. This apparent conflict in early results, 
along with relatively small cohort size, sug-
gest that this is an area that will benefit from 
efforts to store, share, and re-use microbiome 
data, as well as efforts to aggregate data for 
comparison in an unbiased and rigorous way. 
This concept is supported by a fourth study 
reviewed in the survey: one study reviewed 
of women with IBS concluded that there 
was evidence for further investigation of 
the relationship between bile acid levels, 
the microbiome, and its mechanism or role 
in IBS [45]. These studies demonstrate a 
changing microbiome in individuals with 
IBS, but highlight the need for evidence to 
understand the role of the microbiome in IBS 
and potential means for treatment.

Type 2 Diabetes. Type 2 diabetes (T2D) in 
the United States has a similarly sized im-
pact on public health: according to the CDC, 
33-35 million Americans are estimated to 
have T2D as of December 2021 [74]. The 
gut microbiome has also emerged as a focus 
within the research community to understand 
T2D and identify treatments and prevention 
methods [4, 75-77]. Although T2D is a highly 
researched disease, only one study found 
passed the inclusion and exclusion criteria. 
In this study, 405 individuals with T2D found 

significant differences in taxa present in the 
fecal microbiome at the genus level according 
to disease severity [42]. A cursory search of 
the query “T2D AND microbiome” alone 
on PubMed for 2021-2023 revealed 1,051 
resulting papers, although inclusion of the 
terms “diet” or “nutrition” on the query vastly 
reduced the search results. One study from 
management of lifestyle factors for T2D using 
digital health applications or mHealth [55] 
indicates that our search terms used may have 
excluded some relevant papers in this area. 

Amyotrophic Lateral Sclerosis (ALS). 
The microbiome is also being investigated 
in diseases not traditionally thought to be 
“diet-driven”. For examples, a study of 66 
individuals with Amyotrophic Lateral Sclero-
sis (ALS) and 73 controls found a significant 
difference in abundance of certain taxa in the 
fecal microbiota of individuals with ALS [44]. 
Outside of this survey, there is some research 
on diet and development of ALS, but diet is 
not currently considered a causal factor [78, 
79]. It is important then to recognize that 
although there is evidence of the impact of 
diet on the microbiome, that the microbiome 
may also be a potential tool for prevention, 
diagnosis, and treatment of diseases not tra-
ditionally considered “diet-driven”. Rather, 
the microbiome should be considered an 
important factor in human health that can be 
modified by dietary behaviors.

Pregnancy. Three studies focused on mi-
crobiome during pregnancy and during the 
postpartum period. A study of n=115 preg-
nant individuals with and without gestational 
diabetes found no significant difference in 
microbiome composition or alpha diver-
sity, although some significant changes in 
bacteria at the genus level were found in 
the third trimester [26]. The authors of this 
study state that their work adds to existing 
studies [76, 80-83] on microbiome changes 
in pregnancy, noting a knowledge gap and 
need for further studies of the microbiome 
during gestation [26]. A 2022 study of 90 
infant-mother pairs examined the relation-
ship between maternal weight (overweight 
or obese) on infant microbiome, also finding 
no significant associations between the mi-
crobiomes of infants born to individuals who 
had developed gestational diabetes versus 

not [31]. Outside of gestational diabetes, a 
study of n=48 pregnant individuals found 
evidence for an association between diet 
and decreased alpha diversity in the fecal 
microbiome, speculating that pre-term birth 
may have links to the microbiome [41]. 
This implicates diet as a modifiable factor 
through which maternal and infant health can 
potentially be addressed [41]. These studies 
again demonstrate a changing microbiome 
in pregnant individuals but highlight the 
need for evidence to understand the role of 
the microbiome before, during, and after 
pregnancy. The literature reviewed also sug-
gests the importance of postnatal support for 
caregivers of infants and children in manag-
ing household tasks. This trend is continued 
in the Infant Diet themed literature, below.

Infant Diet. Food allergies and intolerance 
in infancy emerged as a trend in microbiome 
studies examined. One study on 30 infants 
examined microbiome composition between 
infants fed a typical cow’s milk-based for-
mula versus a hydrolyzed formula (often 
used for infants with dairy intolerances), 
observing significant differences in micro-
bial composition after 4 months, as well as 
observing Ruminococcus gnavus as a taxa 
on that significantly differentiates between 
the two groups [29]. Another study of 148 
infants with a cow’s milk protein allergy 
found a significant decrease in symptoms, 
caregiver burden and healthcare resources 
when a symbiotic was prescribed alongside 
specialized formulas versus no symbiotic 
[38]. Considering the rapid growth and 
establishment of the infant gut microbiome 
as well as its impact on health, it is unsur-
prising that these studies on infant diet and 
microbiome have begun to emerge. A study 
of 28 preterm infants found a significant 
difference between microbiome compo-
sition and growth in head circumference, 
especially in the phyla Bacteriodota and 
family Lachnospiraceae [33]. This literature 
also implicitly suggests the importance of 
postnatal support for caregivers of infants 
and children in managing household tasks 
such as feeding, grocery purchasing, and 
food preparation especially in infants with 
specialized feeding needs. These needs may 
be addressed using digital health interven-
tions or informatics approaches.



IMIA Yearbook of Medical Informatics 2023

93

Informatics for your Gut: at the Interface of Nutrition, the Microbiome, and Technology

Microbiome and Diet. Five studies focused 
on understanding diet and the microbiome, 
continuing an existing trend in the literature. 
A 2022 review described the current knowl-
edge about the role of the gut microbiome in 
lipid metabolism and short chain fatty acid 
modulation [28]. The authors acknowledge 
the impact of diet on the microbiome, in-
cluding how quickly the microbiome reacts 
to changes in dietary composition, timing 
of meals, fiber intake, and impact of mi-
cronutrients [28]). One study performed a 
week-long at-home immersion experience 
for 74 participants focusing on improving 
behaviors in physical activity and diet [35]. 
The authors report that anti-inflammatory 
taxa increased in the microbiome of partic-
ipants after the intervention [35]. Another 
study examining long term dietary intake 
effects on the microbiome (n=128 adults) 
found an association between self-reported 
carbohydrate intake and gut microbiome 
composition [44]. A study of 59 individuals 
aged 40-85 found no significant changes in 
fecal microbiome composition’s alpha di-
versity by age. However, authors did report 
age-related differences in microbiome com-
position from samples taken from salivary 
and gastrointestinal sites [37]. The results of 
these four studies highlight a need for larger 
microbiome studies, how the microbiome 
is captured, and the diversity of evidence 
that is building our understanding of the 
gut microbiome. Lastly, a larger cohort 
study of diet and microbiome in n=3,308 
participants reported taxa that was able to 
differentiate between individuals consum-
ing high levels of animal protein versus low 
levels of animal protein [34]. 

3.2   Usability and Accessibility of 
Digital Health Applications
This literature survey focused on digital 
interventions that could be self-managed: 
this includes improving, tracking, or mon-
itoring modifiable behaviors for patients or 
consumers who are managing their health 
at home. The subthemes that emerged 
from this literature were consistent despite 
a broad array of research topics and foci: 
Applications intended to support or enhance 
lifestyle factors impacting health need to be 

easy to use, easy to learn, fast, accessible, 
and perceived as useful. Noncompliance was 
when users experienced technical issues, or 
when an application or intervention was not 
convenient to use.

There is a wealth of diet-driven appli-
cations already online: food trackers, meal 
planners, label scanning applications, weight 
loss programs, and fasting trackers are all 
examples. Demand for consumer support 
in pursuit of health and wellness is high. 
Similarly, a focus on usability and feasibility 
of prototype applications and interventions 
emerged in the literature.

Applications Examining Diet or Phys-
ical Activity Exclusively. Four studies 
focusing on exclusively diet or physical 
activity applications were reviewed. A 
web-based application for management of 
dietary patterns, eNutri, was evaluated for 
usability using the System Usability Scale 
using n=106 participants in Germany [24]. 
Participant feedback demonstrated above 
average usability but stated concerns 
about the amount of time required by the 
application to complete its purpose (26.7 
minutes, mean) [24]. Another approach 
aimed to design a “user-centered” dietary 
management tool for type 2 diabetics, 
surveying 21 individuals over 4 project 
phases to understand user needs [50]. The 
study revealed participant’s desire for ease 
of access to information, ease of commu-
nication, provision of information/content 
that is easy to understand to accommodate 
a busy lifestyle [50]. Physical activity-only 
interventions were also reviewed. A 2022 
mHealth study of a smartphone application 
designed to encourage physical activity 
was performed to compare usability and 
enjoyment [46]. A total of 20 participants 
gave feedback on the system, and results 
indicated that technical issues when using 
the application negatively affect use [46]. 
A separate study of a Bluetooth-enabled 
resistance band for enhancing strength 
reported positive feedback on usability 
in terms of ease of use, ease of learning, 
and user satisfaction [56]. These studies 
highlight the importance of user-centered 
design in lifestyle management applications 
designed to support behaviors that improve 
positive health outcomes.

Diet, Sleep, and Physical Activity. Four stud-
ies examined applications or interventions 
designed to support multiple lifestyle factors 
versus one single factor (i.e., diet, exercise, 
sleep), especially in vulnerable patient popula-
tions. Authors of a 2022 study (n=17) on user 
experience with a web-based weight manage-
ment application found important factors to 
enhance use for self-management of diet and 
physical activity in kidney transplant recipi-
ents [47]. An mHealth application supporting 
healthy diet, physical activity, and sleep habits 
for wheelchair users (n=14) also concluded 
that successful user engagement relied on 
ease of use, usefulness, and ease of learning 
[23]. For this study, users also demonstrated 
interest in personalization of the application, 
ability to access user history, and access to 
personalized insights based on their input data 
and behaviors [23]. A prototype application 
designed to support improved health behav-
iors in n=50 prediabetic participants shared 
results supporting a focus on applications that 
are easy to use and perceived as useful [55]. 
A much larger study of over 16,000 users of a 
phone-based app for self-management of T2D 
reported that app engagement was associated 
with improved patient outcomes (as measured 
by blood A1C) [49]. 

Applications for Parents and Caregivers. 
As described previously, food allergies and 
intolerance in infancy emerged as a trend 
in microbiome studies examined. Mirroring 
this trend, four studies were reviewed that 
reflect the use of technology to support par-
ents and caregivers. A 2022 study of n=126 
postpartum individuals evaluated subject use 
of applications meant to track infant feeding 
patterns, including feeding times, duration, 
volume of feed, and more [48]. Most of the 
subjects (n=72) who used the infant feeding 
application used it for logging or tracking; 
factors describing their support for use of a 
tracking app included ease of use and ability 
to use with a co-parent or co-caregiver [48]. 
A 3-phase study to evaluate design needs for a 
social and emotional well-being application in 
Aboriginal and Torres Strait Islander women 
concluded that app design for this approach 
requires extensive end-user consultation and 
investment in user-centered design [53]. A 
study of n=45 parents of newborn infants was 
performed to discern end-user needs for a 
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chatbot application supporting parental sleep 
habits and infant feeding in the first 6 months 
of life [54]. Some of the findings of this study 
included a desire for short interactions within 
the application, willingness to share their data, 
and noncompliance due to technical issues, 
lack of sleep, and physical discomfort [54]. 
A web-based app designed for menu planning 
was studied for usability by 64 childcare ser-
vices employees in Australia; feedback noted 
by the authors described a need for improve-
ments in speed and ease of use [57]. Feedback 
also demonstrated majority enthusiasm and 
usefulness of a menu planning application 
for use in their daycare center [57].

Virtual Health Assistants. A 2021 review 
of the literature on virtual health assistants 
(n=48) examined the user experience of 
interactive information sharing resources 
(virtual health assistants or chatbots) based 
on their visual design and conversational 
style, recommending focus on empathetic 
interaction, humanistic visual and conversa-
tional designs would fare best [52].

3.3   Reproducibility and Rigor 
of Computational Analysis in the 
Microbiome
The literature on microbiome sample collec-
tion, sample processing, nucleotide extraction, 
sequencing, and data freely acknowledges 
concerns around data quality, reproducibility, 
and the need for quality assessment and con-
trol. As microbiome data gathering becomes 
cheaper and calls for improved biomedical 
data management standards increase [84], 
the need for these methods will continue to 
grow. Tools, methods, or calls for enhanced 
data management infrastructure, re-use, and 
code sharing were described.

Removal of Bias in Microbiome Analysis. 
Many microbiome datasets have small 
sample sizes, and there is interest in means 
to compare, combine, or otherwise aggre-
gate results to see which findings can be 
generalized. Methods, applications, and 
recommendations for this type of broad scale 
comparison and quality assessment in micro-
biome data were proposed in the literature to 
correct for environmental batch effects [58], 

for population-level data stratification [36], 
filtering of rare taxa for reproducibility and 
generalizability [63], among others. Repro-
ducibility continues to be present as a topic 
of interest, including a method (RESCRIPt) 
for enhancing reproducibility of reference 
databases commonly used for taxonomic 
identification in microbiome analysis [60].

A review performed in response to chal-
lenges in defining a microbial association 
network in an environment that is not biased 
by experimental or computational artifacts, 
calling for focus on benchmarking and 
validation [62]. Development of minimum 
information standards, called the STORMS 
checklist, for microbiome research that 
recognizes the interdisciplinary nature of mi-
crobiome research, and the data management 
processes that must be in place to enhance 
reproducibility and replicability [59]. There 
is a need and enthusiasm for training mate-
rials on microbiome composition analysis as 
demonstrated by sessions provided for the 
microbiome analysis software QIIME2, with 
requests for additional trainings on reproduc-
ibility and workflow documentation [61]. 

The Future of Artificial Intelligence in Mi-
crobiome Research. A review on machine 
learning in the microbiome space proposed 
recommendations for reliable application of 
artificial intelligence for precision medicine, 
including creation of standards, increase in 
quantity and quality of microbiome data, 
application of appropriate data management 
solutions such as the Findable, Accessible, 
Interoperable, and Reusable (FAIR) data prin-
ciples, and support for interdisciplinary team 
science [66]. A similar review examining 
machine learning challenges in human micro-
biome data echoes a need for larger studies 
of a certain quality, experimental and compu-
tational bias, and need for interpretability of 
machine learning model outputs [67].

3.4   Precision Medicine and 
Precision Nutrition 
Precision medicine and precision nutrition 
were emerging topics that encompassed mul-
tiple disciplines within the computational 
health and biology space. There is massive 
interest in the role of the microbiome in 

precision medicine [85-87], both generally 
and for specific applications such as the 
treatment of cancer [88] and to enhance 
pharmacologic intervention [89]. This inter-
est extends to the relationship between nutri-
tion and the microbiome. In May 2020, the 
National Institutes of Health described the 
role of nutrition informatics in its 2020-2030 
Strategic Plan for NIH Nutrition Research, 
which details four questions as a part of its 
strategic approach: “What do we eat and how 
does it affect us?, “What and when should 
we eat?”, “How does what we eat promote 
health across our lifespan?”, and “How can 
we improve the use of food as medicine?” 
[90]. Answering these high-level questions 
requires interdisciplinary, team-science 
based approaches that span the translational 
science spectrum, from bench to bedside. As 
methods for capturing dietary behavioral 
data, food composition, provenance, and 
preparation data improve, and our under-
standing of the impact of dietary patterns 
on the microbiome improves, it is possible 
to imagine a future where the interface of 
bioinformatics and health informatics is 
more clearly realized.

Future Trends. Trends discussed through 
research studies and reviews examined 
clearly outline diet-driven diseases as a 
target for precision medicine and nutrition. 
Obesity is one a high-impact target for the 
development and application of precision 
nutrition approaches. A 2021 review pre-
dicts that future applications of microbiome 
research to benefit precision nutrition will 
include manipulation of the gut microbiome 
through diet, pre- and probiotic supplemen-
tation to alter microbiome composition, as 
well as fecal microbiota transplantation for 
treatment of disease [25]. A perspective 
article in PNAS notes the relationship be-
tween the microbiome and health inequities 
[65]. Therefore, it can be recognized as a 
tool for researchers to examine as a modifi-
able factor to improve human health in those 
populations experiencing health inequity 
[65]. One study, upon finding differences 
in fecal microbiome taxa between obese 
and non-obese African American children 
(n=30) aged 6-10 years old, speculated on 
a need for personalized approaches that 
are inclusive of ethnicity and other factors 
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such as socioeconomic status [40]. A 2022 
review on racial disparities and cardio-
vascular health notes the role of dietary 
behaviors and environmental factors on the 
microbiome, stating that they will likely 
factor into “precision medicine” to improve 
outcomes [51]. Other angles include the 
examination of dietary trends over longer 
periods of time. For example, another 
review described the “nutribiography”, a 
collection of behavior over the lifetime is 
proposed as a potential future means for 
examining the impact of long-term diet on 
inflammation and aging [64]. Research in 
this space appears to be trending towards 
the understanding of food environment and 
socioeconomic factors in supporting con-
sumer purchasing and dietary choices lead-
ing to positive health outcomes. This work 
recognizes the need for improved nutrition 
literacy and improved food access, as well 
as accessible and clear product labeling.

4   Discussion
Technology is allowing for the scientific 
community to bridge the gap between 
health informatics and bioinformatics for 
the understanding of nutrition and the 
microbiome. This work identified major 
themes in (1) Microbiome and Diet-driven 
Disease, (2) Usability and Accessibility of 
Consumer Health Tools, (3) Reproducibility 
and Rigor of Computational Analysis in 
the Microbiome, and (4) Precision Medi-
cine and Precision Nutrition. While each 
of the individual themes on usability and 
accessibility, microbiome and diet, and 
reproducibility has a clearly defined limit 
to its scope, these limits have potential for 
overlap through the application of tech-
nology and informatics. The possibility of 
digital dietary applications for supporting 
modification of the gut microbiome has 
great potential for improving health out-
comes, for example. However, researchers 
pursuing these pathways must also be aware 
of the need for user-centered design in their 
applications, the reality of food access chal-
lenges, and the need for rigorous research 
supporting recommendations based on 
existing microbiome data. 

Approximately 60% of the United States 
population experiences diet-related chronic 
disease such as overweight/obesity, heart 
disease, stroke, or T2D [91, 92]. Approxi-
mately 56 million adults aged 65 and older 
currently live in the United States, and up to 
60% of those individuals are estimated to ex-
perience malnutrition [93,94]. Another 10% 
of the United States population experiences 
physician-diagnosed food allergies and/or 
intolerances [95, 96]. There is great potential 
to enhance disease prevention via technology 
and precision nutrition, but research in this 
area must address the factors of health equity 
that play into making dietary choices that fuel 
positive outcomes. This includes developing 
technology to support those choices that is 
easy to use, easy to learn, fast, personalized, 
and addresses gaps in health literacy found 
in vulnerable populations [97-99]. This 
also includes acknowledgement of research 
demonstrating that purchase and preparation 
of nutritious food in the home requires time, 
effort, and support [20, 100, 101].

From a bioinformatics perspective, there 
is great potential for continued microbiome 
research and its relationship to dietary 
patterns to enhance human health. The lit-
erature reviewed on microbiome research in 
this survey demonstrates a need for methods 
to compare and aggregate data, a need for 
reporting standards, workforce training, and 
needs for understanding challenges in both 
experimental and computational reproduc-
ibility and generalizability in microbiome 
analysis. This requires engagement of the 
informatics community and resources to 
build data sharing and re-use infrastructure, 
as well as communication of biases and 
challenges in data analysis. This charge is 
supported by existing work in the literature 
[102-105].

5   Conclusions
A survey of recent literature exploring the 
relationships between technology, nutrition 
and the microbiome, and self-management 
of dietary patterns was performed. A total 
of 45 papers relevant to the inclusion and 
exclusion criteria were examined for major 
and minor themes, including: 

1. Microbiome and Diet-driven Disease, 
with subthemes focusing on the impact 
of diet on the microbiome, diet-driven 
or related diseases including but not 
limited to IBS, T2D, overweight/obesity, 
pregnancy, and infancy;

2. Usability and Accessibility of Con-
sumer Health Tools, with subthemes 
focusing on digital health applications 
to support subset populations in diet, 
physical activity, sleep, or combinations 
of all three and other lifestyle factors. 
Subthemes highlighted user needs of 
caregivers and parents in their caregiving 
roles;

3. Methods, Reproducibility, and Rigor, 
with subthemes including removal of bias 
in microbiome analysis and the potential 
for artificial intelligence in microbiome 
research;

4. Precision Medicine and Precision Nu-
trition, with a focus on how these will be 
applied in the future to improve human 
health.
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