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Abstract Background Chronic kidney disease (CKD) is common and associated with adverse
clinical outcomes. Most care for early CKD is provided in primary care, including
hypertension (HTN) management. Computerized clinical decision support (CDS) can
improve the quality of care for CKD but can also cause alert fatigue for primary care
physicians (PCPs). Computable phenotypes (CPs) are algorithms to identify disease
populations using, for example, specific laboratory data criteria.
Objectives Our objective was to determine the feasibility of implementation of CDS
alerts by developing CPs and estimating potential alert burden.
Methods We utilized clinical guidelines to develop a set of five CPs for patients with
stage 3 to 4 CKD, uncontrolled HTN, and indications for initiation or titration of
guideline-recommended antihypertensive agents. We then conducted an iterative data
analytic process consisting of database queries, data validation, and subject matter
expert discussion, to make iterative changes to the CPs. We estimated the potential
alert burden to make final decisions about the scope of the CDS alerts. Specifically, the
number of times that each alert could fire was limited to once per patient.
Results In our primary care network, there were 239,339 encounters for 105,992
primary care patients between April 1, 2018 and April 1, 2019. Of these patients, 9,081
(8.6%) had stage 3 and 4 CKD. Almost half of the CKD patients, 4,191 patients, also had
uncontrolled HTN. The majority of CKD patients were female, elderly, white, and
English-speaking. We estimated that 5,369 alerts would fire if alerts were triggered
multiple times per patient, with a mean number of alerts shown to each PCP ranging
from 0.07–to 0.17 alerts per week.
Conclusion Development of CPs and estimation of alert burden allows researchers to
iteratively fine-tune CDS prior to implementation. This method of assessment can help
organizations balance the tradeoff between standardization of care and alert fatigue.
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Background and Significance

Electronic health records (EHRs), particularly those with
computerized clinical decision support (CDS) that delivers
evidence-based recommendations at the point of care, have
been shown to improve the quality of care and clinical
outcomes.1–7 However, CDS can also lead to “alert fatigue,”
also known as “pop-up fatigue,” limiting effectiveness.8–11

In complex, data-intensive health care environments like
primary care, alert fatigue can be particularly pro-
nounced.12–14 In addition, many believe EHRs are a major
contributor to physician burnout.13,15–17 In addition to the
impact on physician well-being, CDS can have unintended
consequences on patient safety if alerts serve as a distraction
from clinically important information.18

Multiple methods to reduce alert fatigue have been
described in the Clinical Informatics literature. Healthcare
systems have recognized the importance of a robust gover-
nance process to prioritize and limit CDS alerts.19 Most
commonly multidisciplinary committees consisting of
physicians, pharmacists, and informaticians evaluate con-
tent through a consensus method.20 Other methods include
using clinician and end-user feedback to modify CDS,
reporting, and visual dashboards.21–26 Many health care
systems use real-world EHR data to determine which alerts
fire most frequently.27,28 However, there are fewer methods
to avoid alert fatigue before alerts are implemented. One
health care system implemented drug-dose alerts in the
silent mode prior to exposing clinicians to alerts and
decreased drug-dose alerts from 12 to 3% of all medication
orders.29

Though preventing alert burden prior to implementation
is amajor advance, preventing the development of alerts that
could lead to alert burden would be more efficient. Alert
burden can be estimated through the use of computable
phenotypes (CPs), which are disease definitions or algo-
rithms that allow the curation of disease populations using
EHR data.30–32 CPs are increasingly used as preliminary data
to determine the feasibility of clinical trial enrollment.33–35

In addition, health services researchers have used CPs to
answer questions about thehealth care delivery system, such
as, are there enough outpatient nephrologists to consult on
patients with chronic kidney disease (CKD) in the primary
care setting?36,37 In addition, best practices for designing and
specifying CDS alerts include querying retrospective data to
identify individual patients for whom a CDS alert would fire
and then estimating the firing rates for the CDS alert prior to
implementation.38 These tasks constitute a feasibility study
that can help to determine the technical and operational
feasibility of CDS prior to the actual programming or build of
the CDS. In addition, validation of data elements during a
feasibility study can address potential errors in complete-
ness, correctness, and timeliness (or “currency”) of the data
driving the CDS.38,39

We sought to assess the feasibility of deploying a set of
CDS alerts for hypertension (HTN) management in CKD
patients in the primary care setting prior to implementation
for a planned clinical trial. We estimated the potential alert

burden and used this information to define the scope of the
CDS prior to implementation.

Methods

Clinical Domain
CKD is both prevalent and costly and may lead to end-stage
renal disease and premature cardiovascular disease.40–46 The
majority of care for early CKD occurs in primary care settings.
Although both CKD and uncontrolled blood pressure are not
difficult to diagnose, both often go unrecognized and are
suboptimally managed by primary care physicians
(PCPs).47–49 CDS could improve optimal management of
CKD in primary care through tailored recommendations:
blood pressure control is imperative in CKD; optimal man-
agement of elevated BP should include treatment with renin
angiotensin-aldosterone system inhibitors, including angio-
tensin-converting enzyme inhibitor (ACEi) or angiotensin
receptor blocker (ARB) agents.50

Patient Population
The populationwas limited to Brigham andWomen’s Prima-
ry Care Network of 15 primary care practices. The network of
primary care practices includes practices within the aca-
demicmedical center, community-based practices in the city
and suburbs, and two urban community health centers. The
population served is diverse in terms of socioeconomic
status, education level, race, ethnicity, and languages spoken.
We limited the population to include adult patients with a
primary care encounter between April, 1, 2018, and April 1,
2019, with an attending physician, nurse practitioner, or
physician assistant. The first primary care encounter was
considered the index encounter. This study was reviewed
and approved by the Mass General Brigham Institutional
Review Board.

The definition of CKD was at least two estimated glomer-
ular filtration rate (eGFR; calculated using CKD-EPI without
race adjustment) less than 60mL/min/1.73 m2 or two urine-
to-albumin creatinine ratio (UACR) greater than 30mg/g at
least 90 days apart in the 2 years preceding the index
encounter.51 The definition of uncontrolled HTN was at least
two systolic blood pressure (SBP) values over 140mm Hg
measured in an ambulatory setting.

Development of Computable Phenotypes
We utilized clinical guidelines to map out the key decision
points for clinicians and to define a set of potential actions.48

This set of decision points and potential actions was reviewed
and refined by a group of subject matter experts who also
considered local practice patterns. For example, the National
Quality ForumHTNmeasure uses 140mmHg as the threshold
for controlled SBP. Even though some recent guidelines rec-
ommend a lower threshold, the group of subject matter
experts decided to continue to use a threshold of 140mm
Hg with the plan of lowering the threshold in the future.

Pseudocode was developed (►Supplementary Tables

S1–S5, available in the online version), and then translated
to Structured Query Language.52 The primary data source
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was the Mass General Brigham Enterprise Data Warehouse,
which contains data extracted from Epic’s Clarity Database.

The final set of decision points resulted in five CPs
(►Fig. 1). The first CP (1A) includes patients with CKD and
uncontrolled SBP who do not have an ACEi on their medica-
tion list. The second CP (1B) includes patients with CKD and
uncontrolled SBP who do not have an ARB on their medica-
tion list. The third CP (2A) includes patients who are cur-
rently on an ACEi but not at an optimal dose, while the fourth
CP (2B) includes those who are on a suboptimal dose of an
ARB. The fifth CP (3A) includes patients who are maximized
on an ACEi or ARB but are not on a diuretic. We then
conducted an iterative data analytic process consisting of
database queries, data validation, and subject matter expert
discussion, to make final decisions which led to a set of five
CDS alerts (►Fig. 2), along with alternate versions condition-
al on whether a patient is a female of childbearing age
(teratogenicity warning) and whether a patient has a history
of angioedema from ACEi (statement that ARB is not
contraindicated).

Iterative Refinement of Computable Phenotypes
For each CP, all required data elements to categorize patients
were extracted, including encounter vital signs, laboratory
values, allergies, and medications. To assess data quality and
validate the data elements for the CDS, we randomly selected
10 patients at each decision point and performed a detailed
chart review. The following data elements were reviewed:
encounter type, encounter department, visit type, provider
type, patient age, patient race, patient sex, blood pressure
values, serum creatinine values, potassium values, medica-
tions, medication start and end dates, and allergies.

Chart review revealed data quality problems with com-
pleteness, correctness, and currency (or timeliness). We
discovered problems with the completeness of the list of
codes for encounter departments, which was supposed to
include all primary care clinics. We were able to identify the

issue by opening the clinic schedules of each network
primary care clinic and reviewing the scheduled patients
to determine whether each patient was captured in a data
query designed to retrieve all encounters in primary care
clinics. When we determined that there were entire clinics
that were not captured, we discovered that two of the clinics
were not included in the set of encounter departments
named Brigham and Women’s Hospital Primary Care and
we were able to add the additional encounter departments
for those clinics to our query.We also checked 10 charts from
the list of encounters retrieved through this query to ensure
that the encounter was a primary care visit. Another way that
this process improved data quality was whenwe determined
that the list of practicing PCPs obtained from the adminis-
trative office was not complete, correct, or current. To
improve the data quality of the list of PCPs, we communicat-
ed directly with individual physicians who did not have
encounters captured in the encounters data query to deter-
mine whether their clinic was missing from that query or
whether they had left the practice. The process was particu-
larly productive when we began to run queries related to
laboratory results. For example, when identifying primary
care patients fitting the CKD diagnosis criteria of two elevat-
ed UACR, chart review revealed laboratory results that were
not retrieved by the data query for the laboratory test with
the common name “MALB/CRE RATIO, RANDOM URINE.” By
examining the individual laboratory results within patient
charts we identified several other common names for the
same test associatedwith thousands of individual laboratory
results: “MICROALB/CREAT(480),” “MALB/CRE RATIO,
URINE,” “MICROALBUMIN/CREATININE RATIO,” and “URINE
MICROALBUMIN/CREAT RATIO EXTERNAL.” The data query
was modified to include the additional laboratory tests and
chart reviewwas conducted. In effect, the process iteratively
improved the likelihood that the CPs would accurately
capture patients of interest. As previously described, we
conducted a human-centered design process employing

Fig. 1 Flowchart to map out key decision points for clinicians.
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multiple methods for gathering user requirements and feed-
back on design and usability.53 Factors such as informative-
ness, actionability, and information overload were also
considered and discussed by subject matter experts. We
discovered multiple situations where local practice norms,
clinical workflow, or existing quality metrics were a consid-
eration. We discussed clinical workflow issues such as inac-
curate SBP readings at thebeginningof the primary care visit.
Many encounters included multiple SBP readings. In the
usual visit workflow, the initial SBP ismeasured by amedical
assistant and is often falsely elevated. If the index encounter
included multiple SBP values, the SBP value with the latest
timestamp was used. We also incorporated CDS to address
uncommon situations: (1) females of childbearing age; (2)
previous allergy reaction of angioedema to ACEi; and (3)
abnormal potassium level. These considerations contributed
qualitative data to the iterative refinement of CPs
(►Supplementary Table S6, available in the online version).

The development of CPs 2A and 2B was more complicated
than the development of 1A, 1B, or 3A. One considerationwas
whether these alerts should recommend titration of each
medication to the maximum dose approved by the Food and
Drug Administration. For example, the maximum dose of
lisinopril is 80mg once per day, but this dose carries a high
risk of adverse events and is not commonly used in practice.

We created a query to determine the most commonly
prescribed dose (►Supplementary Table S7, available in
the online version) and only recommended titration for
doses below the most commonly prescribed dose. Another
constraint was that we could not develop alerts with multi-
ple conditional recommendations in Epic, meaning that we
needed to create one alert for each dose of medication (i.e.,
one alert that could address each possible starting dose of
lisinopril with an appropriate titration). Instead, each start-
ing dose required a separate alert (e.g., one alert for a starting
dose of 10mg recommending titration to 20mg and another
alert for a starting dose of 20mg recommending titration to
40mg). We were able to determine that the majority of
patients who were prescribed an ACEi were prescribed
lisinopril and the majority of patients who were prescribed
an ARB were on losartan. Based on local prescribing practi-
ces, alerts 2A and 2B recommended lisinopril for an ACE
inhibitor and losartan for an ARB.

Baseline Metrics: Population Characteristics and Local
Practice Patterns
We examined the baseline demographic and clinical charac-
teristics of the patient population. We also examined base-
line local practice patterns of HTN treatment. In particular,
we were interested to know how aggressive PCPs were in

Fig. 2 (A–E) Five CDS alerts resulting from five computable phenotypes and associated recommendations.
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HTN management at baseline. We examined the mean
number of medications per patient, mean number of antihy-
pertensive (anti-HTN) classes per patient, and proportion of
patients prescribed 1, 2, 3, or >4 anti-HTN medications.

Estimation of Alert Burden
As the final, andmost informative step in terms of determin-
ing feasibility, we estimated the alert burden that would
result from CDS alerts targeting the five CPs. We estimated
how many alerts would fire in a scenario where alerts were
programmed to fire in each encounter where a patient met
the criteria for one of the CPs. Then, we plotted the firing
pattern of each alert to assess variability in firing rates week
to week over the course of 1 year. We were able to identify
which providers would see each alert and calculated the
mean number of alerts per PCP per week.

Results

Population Characteristics and Local Practice Patterns
There were 105,992 primary care patients seen in 239,339
encounters with 281 PCPs between April 1, 2018, and April 1,
2019. The stage 3 and 4 CKD population consisted of 9,081
patients (8.6% of the primary care population). Encounters
for patients with stage 3 to 4 CKD accounted for 28,242 (12%)
of all primary care encounters. Among CKD patients, 4,191
had uncontrolled HTN. Themajority of patients were female,
elderly (mean age 77), about two-thirds were white and 83%
were English speakers (►Table 1).

Local practice patterns revealed that, on average, these
patients were prescribed agents from two anti-HTNmedica-
tion classes and 18% of these patients were prescribed agents
from four or more anti-HTN medication classes (►Table 2).

Alert Burden: Volume of Alerts and Firing Rates
First, we estimated the volume of alerts if the alerts were
programmed to fire at each encounter where a patient met
the criteria for one of the five CPs. If alerts were to fire
multiple times per patient over the course of 1 year, 5,369
alerts would fire overall. The mean number of alerts shown
to each PCP would range from 0.07 to 0.17 alerts per week on
average (►Table 3). After reviewing these results, we decided
to include a “lockout period” so that the alertswould onlyfire
once per patient and would be suppressed for all future
encounters. The logic of the BestPractice Advisory module
allowed us to suppress the alert in subsequent encounters
even if the patient continues to meet the criteria in
subsequent encounters. If alerts were to fire once per patient
over the course of 1 year, 2,524 alerts would fire overall
(►Figs. 3–5). Of note, the decision to limit the development
of alerts 2A and 2B to just lisinopril and losartan, as opposed
to all ACEi and ARB medications, resulted in the exclusion of
490 patients or 19% (►Fig. 4).

In addition to the overall alert burden,we observed a large
amount of week-to-week variability in alert firing rates, as
much as fourfold for ACEi alerts (1A and 2A) and the
hydrochlorothiazide alert (3A) but only a twofold variation
for ARB alerts (1B and 2B; ►Fig. 6).

Table 1 Demographic characteristics of patient population
with stage 3 to 4 CKD and uncontrolled hypertension

Patients (N¼ 4,191)

Gender male (%) 1,560 (37.2)

Age (mean [SD]) 77.31 (11.79)

Race (%)

American Indian or Alaska Native 7 (0.2)

Asian 81 (1.9)

Black or African American 610 (14.6)

Hispanic or Latino 226 (5.4)

Other 379 (9.0)

Unknown or declined 195 (4.7)

White 2,693 (64.3)

Language (%)

English 3,477 (83.0)

Spanish 552 (13.2)

Other 162 (3.9)

Abbreviations: CKD, chronic kidney disease; SD, standard deviation.

Table 2 Local practice patterns of HTN management for
patient population with stage 3 and 4 CKD and uncontrolled
HTN

Patients

N 4,191

Medications (mean [SD]) 10.06 (5.44)

Anti-HTN medication classes (N [SD]) 2.3 (1.36)

Zero anti-HTN medications (N [%]) 345 (8.23)

One anti-HTN medication (N [%]) 879 (20.97)

Two anti-HTN medications (N [%]) 1,215 (28.99)

Three anti-HTN medications (N (%)) 1,007 (24.03)

Four or more anti-HTN medications (N [%]) 745 (17.78)

Abbreviations: CKD, chronic kidney disease; HTN, hypertension.

Table 3 Alert firing rate for each CP and mean alert rate per
PCP per week if alerts were to be programmed to fire multiple
times per patient

CP Encounters
triggering alert
over 1 year

PCPs shown
alerts

Mean alerts/
PCP/week

1A 2,074 234 0.170

1B 587 155 0.073

2A 1,315 221 0.114

2B 801 189 0.082

3A 592 172 0.066

Abbreviations: CP, chronic kidney disease; PCP, primary care physicians.
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Discussion

We conducted a study to determine the feasibility of a CDS
intervention targeting early CKD populations in primary care
and found that the potential alert burden was lower than
expected. After estimating the alert burden, we decided to
implement alerts targeting five CPs and only allowing the
alerts to fire once per patient. We believed that at this level
the alert burden would be acceptable.

Sophisticated CPs have been developed for CKD popula-
tions.30,32 To our knowledge, this is the first study to use the
CPs for the design of CDS for CKD prior to implementation.
One study used a similar method to refine drug–drug inter-
action alerts.49,54

A secondary benefit of this feasibility study was that we
achieved a nuanced understanding of local practice patterns
and the complex population which the CDS would impact.
Specifically, the baseline anti-HTN management of this el-
derly group with complex multimorbidity was more aggres-
sive than expected, though still not in compliance with
current guidelines.55 One important aspect of anti-HTN

management that we did not explore is patient tolerance
of medication (adverse reactions that are not significant
enough to be documented in the EHR) and patient prefer-
ence. The high variability in firing rates from week to week
was also unexpected. Increased frequency of alerts could
contribute to alert fatigue and decrease compliance suggest-
ing that interventions to decrease PCP alert burden should
react to changes in the alert burden on a daily or continuous
basis. The titration of alert burden should also take into
account physician interaction with alerts, which can be
assessed through audit logs.56

Limitations

This study has several limitations. First, this is a feasibility
studywhich does not measure the alert burden in practice or
the reception by PCPs. Second, the CDS targets SBP>140mm
Hg, which is not in accordance with current guidelines, but
this decision was made in accordance with local expert
opinion. It would be trivial to lower the SBP threshold in
future implementations by changing just one rule within the

Fig. 3 Estimated volume of alerts targeting patients who are not prescribed ACEi or ARB (CPs 1A and 1B).
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alert logic. On the contrary, CDS governance policies often
require in-depth clinical content review for similar changes,
which would require significant time and effort. A similar
limitation is that, due to limited resources for build effort, we
limited CP 2A to lisinopril and 2B to losartan which excluded
a group of patients. Another limitation is that current best
practice favors chlorthalidone over hydrochlorothiazide as
the preferred thiazide diuretic due to CKD-specific benefits
and some guidelines recommend a calcium channel block-
er.57,58 Secular trends in practice patterns or patient popu-
lation could alter the rates of alert firing. Organizations
should monitor alert firing over time. The sensitivity of the
CPs was not measured as compared with gold standard.
However, chart review of positive cases was used to itera-
tively improve the positive predictive value of the CPs by

identifying incorrect data andmissing data. The focuswas on
positive predictive value rather than sensitivity because our
main concernwas alert fatigue. Lastly, this study was limited
to one content area within one hospital and the external
validity of the CPs was not assessed.59 Future studies utiliz-
ing these CPs should include an assessment of external
validity at another institution.

Conclusion

Given the contribution of alert burden to physician burnout,
there is a need for approaches such as the development of CPs
and estimation of alert burden prior to implementation. These
approaches will allow research investigators and vendors to
iteratively fine-tune CDS during development. This method of

Fig. 4 Estimated volume of alerts targeting patients prescribed a suboptimal dose of ACEi or ARB (CPs 2A and 2B).
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assessment can help organizations to balance the tradeoff
between standardization of care and alert fatigue.

Clinical Relevance Statement

This study addresses the overload of information that
primary care physicians experience as a result of numer-
ous electronic reminders to provide high-quality, evi-
dence-based care. The study serves as a proof of concept
that computable phenotypes and estimation of alert bur-
den prior to implementation can reduce information
overload.

Multiple-Choice Questions

Q1. Computable phenotypes allow designers of clinical deci-
sion support to:
a. Identify patients meeting inclusion criteria for a

chronic disease cohort.
b. Identify subgroups of chronic disease patients with a

gap in evidence-based prescribing.
c. Prospectively determine the impact of an intervention

to increase evidence-based prescribing. On clinical
outcomes

d. Both a and b.

Correct Answer: The correct answer is option d. Computable
phenotypes rely on structured EHR data including laboratory
results and vital signs to identify groups of patients with a
given chronic disease diagnosis and can go further to identify
patients within those cohorts who have not been prescribed
evidence-based treatments. C is incorrect because comput-
able phenotype studies are typically retrospective since
characteristics of patients in a prospective clinical trial could
change, excluding the patient from the computable pheno-
type (e.g., the patient’s blood pressure improves).

Q2. A clinical decision support designer could use a comput-
able phenotype along with retrospective data about a
healthcare organization’s population to:

a. Estimate the total future alert burden for a clinical
decision support alert per year for that entire health-
care organization.

b. Estimate the number of patients for whom the alert
would fire over a period of 1 year.

c. Estimate the number of times that an individual
physician would view the alert over a period of 1 year.

d. All of the above.

Correct Answer: The correct answer is optiond. By examining
retrospectivedata, computablephenotypes can identifyspecific

Fig. 5 Estimated volume of alerts targeting CP 3A.
Fig. 6 Weekly alert firing rate by CP type.
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patientswhowould trigger a clinical decision support alert and
these estimates can be aggregated to the physician or organiza-
tion-level.
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