
Hydrogen-Induced Formation of Surface Acid Sites on Pt/Al(PO₃)₃ Enables Remarkably Efficient Hydrogenolysis of C–O Bonds in Alcohols and Ethers

Hydrogenolysis of C–O Bonds in Alcohols, Carbonyls, and Ethers Using Pt NPs Supported on Al(PO₃)₃

\[\text{Pt(acac)₂} \rightarrow \text{Al(PO₃)₃} \rightarrow \text{Pt/Al(PO₃)₃} \]

- **Significance:** Platinum nanoparticles supported on Al(PO₃)₃ (Pt/Al(PO₃)₃), prepared according to equation 1, catalyzed the hydrogenolysis of C–O bonds in alcohols and carbonyls under 1 atm H₂ or Ar/H₂ (9:1) atmosphere to afford the corresponding hydrocarbons in up to >99% yield (eq. 2). Pt/Al(PO₃)₃ also promoted the hydrogenolysis of ethers under similar conditions to afford the corresponding hydrocarbons and alcohols in up to 95% yield (eq. 3).

- **Comment:** The exhaustive hydrogenation of a biomass derived furanic compound took place at 110 °C with Pt/Al(PO₃)₃ to give 6-propylundecane, a green fuel, in 87% GC yield (eq. 4). In the hydrogenolysis of 4-ethylbenzyl alcohol, the catalyst was recovered and reused four times without significant loss of its catalytic activity. Mechanistic studies suggested that Brønsted acid sites on the catalyst surface is essential to activate the C–O bond.

Substrate

- **Product**
- **GC yield**

Substrate

- **Product**
- **GC yield**

SYNFACTS Contributors: Yasuhiro Uozumi, Aya Tazawa

SYNFACTS 2024, 20(08), 0843 Published online: 16.07.2024 DOI: 10.1055/s-0043-1774942; Reg-No.: Y993245F

© 2024 Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany