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Introduction

Advances in neurosurgical techniques have significantly
improved overall survival and quality of life in patients
with low-grade glioma1 and medically refractory epilepsy.2

A lesionwithin or adjacent to an eloquent brain region poses
a unique challenge for neurosurgeons, as maximal resection
conflictswith the preservation of neurological functions. The
wide interindividual anatomical and functional variability of
eloquent areas and the limitations of current preoperative

functional brain imaging technologies reinforce the need for
real-time intraoperative mapping techniques to enable safe
and tailored resection.3–5 As such, despite almost a century
of clinical application, direct electrical cortical stimulation
(DES) in awake patients remains the gold standard for
intraoperative brain mapping of the eloquent cortex due to
its high precision and reliability in identifying functional
cortical and subcortical structures during resection. In
the first part of this narrative review, we summarize the
principles, techniques, and applications of intraoperative
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Abstract Brain mapping has evolved tremendously in the past decade, fueled by advances in
functional neuroimaging technology in neuro-oncology and epilepsy surgery. Despite
this, wide anatomic-functional interindividual variability and intraoperative brain shift
continue to challenge neurosurgeons performing surgery within or near eloquent brain
regions. As such, intraoperative direct cortical and subcortical stimulation mapping
remains the gold standard for localizing eloquent brain regions with precision for a safe
and tailored resection. Intraoperative stimulationmapping (ISM) allows for maximizing
the extent of resection while minimizing postoperative neurological deficits, resulting
in better patient outcomes. Understanding the technical nuances of ISM is imperative
for the anesthesiologist to provide better anesthetic management tailored to the
surgery and stimulation mapping planned. A comprehensive search was performed on
electronic databases to identify articles describing intraoperative cortical and subcor-
tical mapping, language, and motor mapping. In the first part of this narrative review,
we summarize the salient technical aspects of ISM and the common neurophysiological
tasks assessed intraoperatively relevant to the anesthesiologist.
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stimulation mapping (ISM) in neurosurgery relevant to
anesthesiologists and the common tasks assessed
intraoperatively.

Methods

A comprehensive electronic search was performed in the
following databases from their inception to June 2023:
PubMed, Embase, Cochrane, Scopus, Web of Science, and
Google Scholar. The literature search was performed using
specific keywords: intraoperative stimulation mapping,
brain mapping, intraoperative cortical or subcortical map-
ping, motor mapping, language mapping, awake craniotomy
(AC), and asleep mapping. Articles were screened and
included if it described the technical aspects of intra-
operative brain mapping either during glioma surgery or
epilepsy surgery, neurophysiological tests done during
intraoperative mapping, and patient outcomes after brain
resection guided by ISM. Articles that described extraoper-
ative mapping and AC without ISM were excluded.

Intraoperative Stimulation Mapping

Brief History of Direct Electrical Stimulation of the
Brain
Direct Electrical Stimulation (DES) of the human cortex was
pioneered by Robert Bartholow in 1874 in a patient with an
exposed cortex secondary to basal cell carcinoma that dem-
onstrated contralateral motor responses.6 Several clinicians
then used it to delineate eloquent parts of the brain, most
notably by Penfield in 1937 with his famous description of
motor and sensory homunculi.7 In the 1970s, George
Ojemann further revolutionized cortical mapping in the
modern era by improving the understanding of cortical
stimulation responses and recording single neurons’ activity
in awake patients.8 His innovation in ISM enabled accurate
language mapping, resulting in a marked reduction in apha-
sia after epilepsy surgery. Before the 1990s, DES was per-
formed primarily in awake patients due to the inconsistent
cortical response elicited in patients under general anesthe-
sia (GA). In 1993, Taniguchi et al proposed a high-frequency
stimulation paradigm in humans for cortical mapping which
they found to be effective in triggering distal muscle con-
traction in patients under GA.9 This became the scientific
basis for current motor mapping under GA. The mapping of
the subcortical tract was first described by Skirboll et al in
1996 in a case series of glioma resections.10 Thereafter, with
a deeper understanding of the white matter tracts and
advancement of functional imaging modalities, cortical
and subcorticalmapping are frequently used together during
ISM in neurosurgery.4,11–18

The Physical Basis of Direct Electrical Stimulation of
the Brain
Electrical stimulation induces a passive increase in the
membrane potential of stimulated neurons at the cathodal
level, which leads to antegrade or retrograde propagation of
an action potential. Once the threshold potential is reached,

it is followed by synaptic conductionwithin the physiological
subcircuit of interest.19 Neurons are preferentially activated
at the level of the initial segment of axons and nodes of
Ranvier, which have the highest density of sodium channels
in the neuron.20,21 Increases in stimulation intensity
increase the density of activated axons in proximity to the
electrode tip and the distance of activated axons through
transsynaptic activation of sites connected to the stimulation
site.22–24 Preclinical studies have shown that single cortical
DES evokes an action potential followed by long-lasting
inhibition suggesting that stimulation of cortical afferents
disrupts the propagation of cortico-cortical signals beyond
the first synapse.25 A comprehensive discussion of the
biophysical and mathematical principles underlying DES is
beyond the scope of this article and can be found
elsewhere.26

Stimulation Paradigms
Twoprimary stimulationparadigms form thebasis of function-
al mapping protocols used in contemporary neurosurgery.27

The traditional DES technique, also known as the Penfield
technique, uses low-frequency (LF) stimulation (50–60Hz)
via a bipolar stimulator probe (►Fig. 1) with two electrodes
5mm apart, delivering biphasic square waveform pulses of
alternating anodal and cathodal polarity. LF stimulation indu-
ces positive mapping responses (motor and speech) in current
intensity range between 2 and 7mA in an awake patient, but
higher current intensities (7–16mA) are required for motor
mapping under GA.28–30

The second technique, or the Taniguchi technique,
employs high-frequency (HF) stimulation (250–500Hz),
monophasic square waveform pulses, delivered as a train
of five pulses (rangebetween 4 and 9 pulses) via amonopolar
(most commonly) or bipolar probe (►Fig. 1).28,31 The current
intensity needed to produce a positive mapping response
(motor and speech) in awake conditions ranges between 2
and 7mA, and higher current is required for motor mapping
under GA (5–15mA).28–30 The electrical field distribution
differs by the stimulation probe used. The monopolar probe
emits a radial homogenous electrical field, while the bipolar
probe delivers a more focused inter-tip electrical field.32 A
bipolar probe with LF stimulation increases the focality, but
requires an increase in current intensity.33 A specialized
monopolar suction stimulator has recently allowed dynamic
mapping via concurrent subcortical stimulation and tumor
resection (►Fig. 2).34,35 The salient differences between both
stimulation paradigms are summarized in ►Table 1.

Physiological Responses to Direct Electrical
Stimulation of the Brain
DES can generate either a positive or negative physiological
response depending on the brain region being stimulated,
the characteristics of the stimulating current, the local
organization of the neuronal circuit, and the use of anes-
thetics and antiepileptic medications.6,25,36 Positive physio-
logical responses to stimulation include involuntary
movement, vocalization, paresthesia, and phosphenes. On
the contrary, negative responses cause interruption of tasks
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such as speech arrest, anomia, alexia, memory deficit, and
disturbances of other higher cognitive processes.19,37,38

These responses are used to establish a map of functionally
essential areas of the cortex and subcortical tracts to guide
resection. This terminology should not be confused with
the terms “positive mapping” and “negative mapping,”

where positive mapping refers to the situation in which
functionally important sites are identified after a positive
or negative physiological response to stimulation. On the
other hand, negative mapping is the situation where no
functional sites are identified in the mapped area, which is
then presumed noneloquent.38–40

Fig. 1 Common stimulation probes used during intraoperative stimulation mapping: (A) monopolar ball-tip probe; (B) monopolar flat-tip probe
(used for simultaneous resection); and (C) bipolar probe.

Fig. 2 (A) Monopolar stimulator (red cable) attached to metal suction tip via a metal clip (red); (B) used by surgeon intraoperatively for
continuous dynamic mapping during resection.

Table 1 Comparison of stimulation paradigms used during intraoperative stimulation mapping

Low-frequency (LF) High-frequency (HF)

Frequency 50–60Hz 250–500Hz

Pulse form Biphasic Monophasic

Probe used Bipolar Monopolar or bipolar (less common)

Number of pulses N/A Train of 5 pulses (range between 4 and 9 pulses)

Current intensity

Awake
Asleep (motor mapping)

2–7mA
7–16mA

2–7mA
5–15mA

Current spread direction Focused inter tip spread Homogenous radial spread

Pulse polarity N/A Anodal for cortical
Cathodal for subcortical

Others Used primarily for language mapping
Less effective for asleep motor mapping
Ineffective in high-risk patients: infiltrative
tumors and long-standing seizures
Higher risk of inducing seizures

Provides information on distance to CST
(1mA¼ 1mm rule) during subcortical mapping

Abbreviations: CST, corticospinal tract; mA, milliampere; N/A, not applicable.
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A false negative is the nonidentification of a critical
eloquent brain region, potentially leading to resection and
permanent postoperative neurological deficits. This may
be secondary to inadequate stimulation settings, inappro-
priate neurophysiological tests (for the area being resected),
or stimulation during a postepileptic refractory phase.19 The
possibility of false negatives should be considered after
negative mapping before initiating resection. Nonetheless,
negativemapping is safewith strict adherence to established
stimulation protocols allowing tailored craniotomies.11,38–40

False negatives can also be minimized by optimizing the
intraoperative tasks selected based on preoperative func-
tional assessment combined with functional imaging.19

On the other hand, false positive is themischaracterization
of a noneloquent region as eloquent, potentially leading to
premature cessation of resection. Several factors may cause
this, including patient fatigue due to the long duration of
functional evaluation (typically 2hours or more), stimula-
tion-induced partial seizures, axonal propagation of stimula-
tion to remote structures, or identification of eloquent
structures that could be functionally compensated following
resectionowing tobrainplasticitymechanisms.Falsepositives
may be inherent in DES, primarily through the activation of
remote structures, and should be considered a possibility
during intraoperative decision-making following positive
stimulation.19 If false positives are caused by patient fatigue,
repeat tests may be performed after a period of rest, and by
limiting the duration of assessment. The use of intraoperative
electrocorticography recording to detect after discharges
(ADs) may reduce false positives from a stimulation-induced
partial seizure. ADs are rhythmic transient epileptiform activ-
ity induced by DES that persists after the termination of the
stimulus. AD results from stimulation of hyperexcitable tissue,
which may overlap with an epileptogenic focus.41 AD is also
used to select the lowest appropriate stimulus intensity to
reduce the incidence of intraoperative seizure.38,41 The map-
ping threshold and AD thresholds may vary between individ-
uals and between different brain regions in one individual.36

Neurophysiological Tests during
Intraoperative Stimulation Mapping

Language andmotor mapping are the twomain neurophysio-
logical modalities tested during ISM-guided resection of the
eloquent brain regions. Tasks chosendependon the locationof
the lesion and the surgical resection planned.29,30 Language
mapping is commonly employed during epilepsy surgery as
most epileptogenic lesions are near language areas, and this
requires an awake patient for speech assessment intraoper-
atively. In the case of a brain tumor within or near eloquent
regions, a combination of motor and speech mapping may be
used depending on the tumor site, thus requiring an awake
patient during ISM-guided resection. However, if only motor
mapping is planned for a perirolandic tumor, thismay be done
under GA. Recently, two small studies looked at the feasibility
of mapping language areas under GA. A case series examined
the feasibility of mapping the motor speech area using elec-
tromyography (EMG) recordings of the laryngeal muscles.42

While another study found that the preservation of language
was possible via cortico-cortical evoked potential mapping of
the arcuate fasciculus under GA.43

Language Mapping
Most patients planned for intraoperative speech mapping
would have a preoperative language assessment performed
by a neuropsychologist or speech therapist to assess their
baseline language production, comprehension, and language
deficits. These tests vary by institution; some examples are
the Boston Diagnostic Aphasia Examination (BDAE), Boston
Naming Test (BNT), Aachen Aphasia Test, and the Dutch
Linguistic Intraoperative Protocol (DuLIP).4,44–46 Intra-
operative tasks include picture naming, counting, text read-
ing, sentence completion, word repetition, spelling, text
writing, and language syntax.4,39 Tasks chosen depend on
the location of the lesion or tumor, the patient’s baseline
performance, and local institutional protocol.30 The most
common language task is picture naming, where the patient
is asked to begin each answer with the phrase “This is a …”

before naming the object in the picture shown to them to
separate pure aphasia from anomia. Preoperative evaluation
also serves the purpose of training patientswith the stimulus
material. For example, in the picture naming task, pictures
that patients do not recognize are removed from intra-
operative testing.47

There is limited literature regarding assessment of bilin-
gual and multilingual patients intraoperatively. A recent
systematic review reported seven studies of which cortical
mapping was performed in multilingual patients with brain
tumor. Heterogeneity was noted in the location and number
of language areas identified intraoperatively.48 A multilin-
gual picture naming test (MULTIMAP) was recently devel-
oped for mapping of eloquent brain regions intraoperatively
to address the previous shortcomings of lack of standard
tests for different languages.49

During cortical mapping, the stimulation intensity is
started at 2mA and progressively increased by 0.5mA to a
maximum of 6mA or 1mA below which evokes an AD poten-
tial. Each site is stimulated at least three times and is consid-
ered apositive sitewhen speech arrest, anomia, or alexia occur
during at least 2 out of 3 stimulation trials.38,39 Subcortical
language tracts are also mapped during surgical resection in
awake patients with similar stimulation paradigms.12 Other
cognitive functions that may be tested in awake patients
during surgery include visuospatial functions, sensorymodal-
ities, memory, calculation, and other higher cognitive tasks.
However, protocols for these other modalities are less well-
established than language testing.50–52

Traditionally, the LF stimulation paradigm was used for
language mapping using a bipolar probe. More recently, HF
stimulation through a monopolar probe has been shown to
be a safe and effective technique for language mapping in
awake patients.53,54 The distance between the resection
margin and the closest positive language site strongly
predicts the evolution of postoperative language deficits,
making language mapping an essential tool to help preserve
language functions.55
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Motor Mapping
Most patients requiring intraoperative motor mapping are for
resections of tumors or lesionswithin or adjacent to themotor
cortex (also known as the Rolandic cortex) or motor pathways
(corticospinal tract, CST).11,34,56–63 Several other brain regions
also play a crucial role in modulating motor responses; these
are the premotor region and the supplementary motor
area.64,65 Cortical or subcortical DES of the motor area would
produce involuntary overt movement or muscle activity
detected by EMG. The use of EMG in asleep conditions also
allows the detection of impending seizures.31,66

Both stimulation paradigms can be used for cortical and
subcortical motor mapping; LF stimulation with a bipolar
probe, or HF stimulation with a monopolar probe.67,68

However, both paradigms have distinct differences under
awake and asleep conditions (refer ►Table 1).28,29 The HF
stimulation technique triggers a time-locked compound
motor action potential response with measurable ampli-
tudes and latencies, in contrast to the sustained muscle
contraction caused by classical LF stimulation.33 HF stimula-
tion induces motor evoked potentials (MEP) when applied
over the primarymotor cortexor subcortically, and the use of
continuous EMG recording (►Fig. 3) allows the use of lower
stimulation intensities with increased sensitivity to identify
motor pathways compared with visual inspection of overt
movement, and thus favorable for use under GA.31,66,69,70

LF stimulation paradigm is ineffective during cortical and
subcortical mapping under asleep conditions in patients

with infiltrative tumors, long history of seizures, and is prone
to cause seizures. Thus, LF is not the preferred paradigm for
this subset of patients for motor mapping under GA.31

Monopolar HF stimulation has been associated with a lower
incidence of intraoperative seizures.33,53,71 Additionally,
patients with epilepsy mapped with HF stimulation under
GA do not suffer from more stimulation-induced seizures
than nonepileptic patients.72 With monopolar HF stimula-
tion, anodal stimulation is best used on the cortical surface,
while cathodal stimulation is optimal in subcortical
tissue.59,70

Furthermore, monopolar HF subcortical MEP stimulation
allows determination of the distance to the CSTwith a simple
rule that 1mA of stimulation intensity to elicit an MEP
response resembles a 1-mm distance to the CST.56,59 Differ-
ent motor thresholds (MTs) have been suggested to define
the limits of resection, with subcortical MTof 3mA generally
considered safe, with a chance of inducing a permanent
deficit of less than 2%.58,61,73 In addition, continuous dynam-
ic mapping of the motor tracts can be performed during
tumor resection by integrating the monopolar stimulator
into the suction tip (►Fig. 2) and gradually reducing the
current intensity as resection becomes closer to the CST.58

Cortical and subcortical DES motor mapping may also be
combined with direct cortical MEP monitoring generated
using a subdural electrode strip over the motor cortex, and
transcranial MEP, recently termed “triple motor mapping.”
This combination method may improve the safety of

Fig. 3 Intraoperative direct electrical stimulation (DES) during asleep motor mapping: Electromyographic (EMG) recording of evoked motor
evoked potential (MEP) during DES in hands and legs with high-frequency (HF) stimulation paradigm (train of 5, 500 Hz, 15mA). FDI, first dorsal
interosseous muscle.
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resection by alerting the surgeon of proximity to the CST
before irreversible changes in MEP occur.34,57,73–76 Somato-
sensory evoked potential phase reversal is another technique
where the central sulcus is identified for localization of the
primary motor cortex during surgery to guide mapping.77,78

Since the introduction of the HF paradigm for direct
cortical motor mapping by Taniguchi et al in 1993,9 more
resections involving perirolandic tumors have been per-
formed under GA with comparable outcomes to AC.79,80

However, Rossi et al reported that a significant portion of
patients undergoing glioma resection under GA developed
hand apraxia after surgery.81 This led to the development of
more advanced motor tasks that can be evaluated during AC.
Tasks to assess the nonprimary motor areas and sensory-
motor integration are the repetitive arm flexion-extension
movement82,83 and the hand-manipulation task.52,81,83,84

Importance of Intraoperative Mapping in
Neurosurgery

Variability of Eloquent Area Localization
Preoperative functional mapping is helpful in defining struc-
tures at risk of intraoperative damage when planning surgical
resection of an intracranial lesion85 using techniques such as
functional magnetic resonance imaging,86,87 diffusion tensor
imaging,88positron emission tomography,87 transcranialmag-
netic stimulation,89 and magnetoencephalography.90,91 Many
studies have demonstrated complex neural connectivity and
interindividual anatomical and functional variability in the
sensory and motor representation of healthy individuals and
thosewith brain lesions.4,5,36,92–95 For example, language sites
identifiedwith ISMareoftensmaller inareathanthe classically
defined Broca and Wernicke areas but are very variable in
localization.3 Evenwithout an underlying identifiable anatom-
ic lesion, patients with epilepsy show a wider distribution of
language areas on language mapping, extending well beyond
the classic Broca andWernicke areas.96 This variability poses a
challenge for neurosurgeons planning resection of tumors
adjacent to presumed eloquent brain, since anatomical land-
marks alone may not be sufficient to determine the eloquence
of a specific brain region.

Furthermore, brain shift during surgery either from phys-
ical factors (related to navigation hardware), surgical factors
(use of retractors, cerebrospinal fluid, or tissue loss during
surgery), or biological factors (tumor type or location, and
use of mannitol to reduce intracranial pressure) may render
imaging-guided mapping less effective for intraoperative
surgical resection.97 Brain tumor progression also leads to
functional reorganization over time, which may complicate
resection guided by imaging only.98–102 Thus, ISM combined
with preoperative functional neuroimaging increases the
precision of identifying critical cortical and subcortical
structures for preservation during surgery.88,103–107

Outcome Evidence for Intraoperative Stimulation
Mapping
Previous retrospective studies have shown that ISM-guided
resection has been associated with a greater extent of

resection (EOR), less delayed neurological deficits,40,60,108

and extended survival109 compared with resection under
GA without ISM. In glioma surgery, a greater EOR correlates
with improved patient outcomes, including survival in low-
grade and high-grade tumors.110–118 Gross total resection
(GTR) of gliomas compared with subtotal resection is associ-
ated with improved overall survival, progression-free sur-
vival, and seizure control.119,120

The GLIOMAP study, the first international multicenter
propensity-matched cohort study, reported similar results
that AC with ISM resulted in fewer late neurological deficits
(26% vs. 41%), longer overall survival (17 vs. 14 months), and
longer median progression-free survival (9 vs. 7.3
months).121 Two recent meta-analyses concluded that ISM
use during glioma surgery was associated with a higher rate
of GTR, longer median overall survival, lower postoperative
complications,122 and shorter hospital stay.123

Conclusion

ISM is the standard of care to guide the resection of lesions
within or adjacent to eloquent brain tissue. Despite tech-
nological advancements in functional neuroimaging, the
wide anatomo-functional variability and intraoperative
brain shifts confound the precision of real-time resection
of the eloquent regions. ISM-guided resection has been
proven to result in better seizure control, reduced postop-
erative deficits, and improved survival. LF and HF are the
two stimulation paradigms utilized for DES, with distinct
differences in their physical properties and outcomes dur-
ing awake and asleep conditions. Language and motor are
the two primary neurophysiological modalities assessed
intraoperatively in neuro-oncological and epilepsy surgery.
Understanding these technical aspects of ISM and the
neurophysiological tests employed enables the anesthesiol-
ogist to provide an anesthetic that may complement the
procedure planned.
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