Pituitary Adenoma Coexistent with Sellar Clear Cell Meningioma Unattached to the Dura: Case Report and Treatment Considerations

Grégoire P. Chatain1 Keanu Chee1 Meghan Driscoll2 B.K. Kleinschmidt-DeMasters1,2 Kevin O. Lillehei1

1 Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, United States 2 Department of Pathology, University of Colorado, School of Medicine, Aurora, Colorado, United States

Address for correspondence Kevin O. Lillehei, MD, Department of Neurosurgery, University of Colorado School of Medicine, 12605 E 16th Ave, Aurora, CO, 80045, United States (e-mail: kevin.lillehei@cuanschutz.edu).

Abstract

Collision tumors involving the sella are rare. Intrasellar collision tumors are most commonly composed of a combination of pituitary adenomas and pituitary neuroendocrine tumors; however, collision tumors consisting of a pituitary adenoma and intrasellar meningioma are exceedingly rare. The authors present the case of a 47-year-old man who presented with progressive right eye vision loss. Magnetic resonance imaging showed a large, heterogeneously enhancing sellar mass with suprasellar extension. Using a transcranial approach with a right subfrontal craniotomy, near-total resection of the mass was achieved. Histologic analysis confirmed a diagnosis of a gonadotroph adenoma with concomitant clear cell meningioma (CCM). This patient was discharged with improvement in visual acuity and no signs of diabetes insipidus. Given the indistinguishable radiographic characteristics of pituitary adenoma and CCM, a preoperative diagnosis of a collision tumor was difficult. This case was uniquely challenging since the CCM component lacked the classic dural attachment that is associated with meningiomas on neuroimaging. CCMs are classified as central nervous system (CNS) World Health Organization (WHO) grade 2 tumors and tend to behave more aggressively, therefore warranting close surveillance for signs of tumor recurrence. This is the first case to report a collision tumor consisting of pituitary adenoma and CCM.

Keywords

► collision tumors ► meningioma ► pituitary adenoma ► sella

Introduction

Coexistent tumors of the sellar region are rare. A recent study that reviewed 16,283 autopsy and surgical pathology cases found that double or triple pituitary adenomas/pituitary neuroendocrine tumors (PitNETs) were the most frequent combination, comprising 40/232 (17.2%) of cases presenting with dual lesions.1 The combination of meningioma and PitNET was one of the rarest combinations (6/232 [2.6%]), far behind PitNET + gangliocytoma (34/232 [14.7%]) or PitNET + sellar metastasis (12/232 [5.2%]).1 Individually, both PitNETs and sellar meningiomas can attain large sizes and cause similar symptoms due to compromise of the optic apparatus,

received August 28, 2023 accepted after revision November 5, 2023 DOI https://doi.org/10.1055/s-0043-1777792. ISSN 2193-6358.

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany
making the diagnosis and treatment of coexisting sellar tumors, or “collision tumors,” difficult.

Herein we present the case of a 47-year-old man who underwent a right frontal craniotomy for resection of a large sellar/suprasellar mass, found only after histological examination to be a dual PitNET and suprasellar meningioma. A transcranial surgical approach was performed due to the extent of suprasellar extension of the tumor and the relative narrowing hourglass deformity seen on magnetic resonance imaging (MRI) at the level of the diaphragma sella. It was only intraoperatively that two separate tumors were identified. Interestingly, intraoperative recognition of the suprasellar lesion as a meningioma was challenging due to the lack of typical dural attachment or vascular pedicle, as is seen for most meningiomas. Histological examination revealed two noncontiguous tumors, a clear cell meningioma, central nervous system (CNS) World Health Organization (WHO) grade 2, and a gonadotroph adenoma. The nondural attachment characteristic of the clear cell meningioma, as well as its occurrence in an atypical anatomical site for this meningioma type, is discussed in conjunction with review of the literature on meningioma and PitNET.

Case Description

History and Examination
The patient is a 47-year-old otherwise healthy man who presented to the optometrist with a 2-year history of progressive vision loss of the right eye. Formal visual acuity testing revealed sensitivity to hand-waving only, and an OS 20/60 with visual fields testing showing complete loss of vision in all four quadrants and sparing of the inferior nasal quadrant only in the left eye. An urgent MRI brain demonstrated a large homogeneously enhancing sellar mass with suprasellar extension (Fig. 1). It was noted to cause significant mass effect on adjacent neural structures including the optic chiasm/nerves with significant cavernous sinus invasion. Following admission to the neurosurgery service, a complete pituitary workup was obtained. The data at the time were the following: cortisol, 8 µg/dL; adrenocorticotropic hormone (ACTH), 11.0 pg/mL; follicle stimulating hormone (FSH), 9.1 mIU/mL; luteinizing hormone (LH), 2.1 mIU/mL; prolactin (PRL), 11.1 ng/mL; free T4, 1.55 ng/dL; thyroid-stimulating hormone (TSH), 1.41 mIU/L; insulinlike growth factor 1 (IGF-1), 208 ng/mL.

Operation and Postoperative Course
Due to the radiographical evidence of significant suprasellar extension of the tumor toward the tuberculum sella along with a relative narrowing of the tumor at the level of the diaphragma sella, a transcranial approach was chosen over a transsphenoidal surgery. Although experienced with both the microscopic and endoscopic transnasal transsphenoidal approaches, we were concerned with our ability to safely access the suprasellar portion of the tumor, as well as the portion extending laterally over the right internal carotid artery. Therefore, the patient underwent a right frontal craniotomy and the dissection was carried out subfrontally to access the tumor. Intraoperative gross pathological findings revealed a well-circumscribed encapsulated suprasellar tumor that was dissected from of the brain parenchyma without obvious dural attachments. A frozen specimen section was suggestive of meningioma. As expected from preoperative imaging, it was significantly displacing the optic nerves and chiasm laterally and posteriorly (Fig. 2). Following resection of the suprasellar lesion, the neurosurgeons were able to clearly visualize the pituitary stalk displaced to the left leading to the diaphragma sella. At this point, as no tumoral connection was seen between the resected suprasellar tumor and the diaphragma sella, a decision was made to open the diaphragma sella adjacent to the pituitary stalk on the right (Fig. 2). At that point, intrasellar tumor was encountered, which was classic for a pituitary adenoma. Tumor was removed from within the sella using pituitary curettes through a transdiaphragmatic approach. Two separate tumor samples were sent for permanent pathology.

Histopathology
Microscopically, there were two distinct tumors. The meningioma showed numerous bands of collagen, with cells manifesting clear cytoplasm (Fig. 3A). Immunohistochemical (IHC) staining for somatostatin receptor confirmed a meningothelial tumor (Fig. 3B), while histochemical staining for periodic acid–Schiff (PAS) highlighted the glycogen-rich cytoplasm (Fig. 3C, left). Diastase digestion proved the presence of glycogen by the absence of PAS staining after treatment, pathognomonic for clear cell meningioma (Fig. 3C, right). The other, separate component of the

![Fig. 1](A,B) Coronal and (B,D) sagittal T1-weighted postcontrast brain magnetic resonance imaging (MRI). (A,B) Preoperative images demonstrating a heterogeneously enhancing mass (3.8 × 5.1 × 3.5 cm) expanding the sella turcica and extending superiorly into the suprasellar cisterns. Compression of optic apparatus is noted along with encasement of the paracns internal carotid artery (ICA). A thin hyperintense layer of signal is seen between the intrasellar and suprasellar compartment. (C,D) Postoperative images illustrate the near total resection of the sellar and suprasellar mass with minimal residual enhancing tissue along the floor of the sella turcica.
resection showed pituitary adenoma/PitNET with patternless sheets of cells (∗Fig. 3D), diffuse nuclear immunostaining for steroidogenic factor 1 (SF-1; ∗Fig. 3E), and the typical patchy immunostaining for FSH (∗Fig. 3F) indicative of gonadotroph adenoma/PitNET.

Discussion

Collision tumors affecting the sellar and suprasellar regions are rare. Due to indistinguishable radiographical characteristics, the preoperative diagnosis of a sellar collision tumor is difficult to differentiate from an isolated tumor type and is often preemptively diagnosed as a pituitary adenoma. Dual PitNETs are the most frequent type of sellar collision tumor, some of which are separate and some of which are contiguous. However, the second most common combination of tumor types varies significantly. Secondary tumors that have been described as co-occurring with pituitary adenomas include gangliocytomas, pilocytic astrocytomas, craniopharyngiomas, spindle cell astrocytomas, pituicytomas, granular cell tumors, and Rathke’s cleft cysts. Collision tumors consisting of a pituitary adenoma and parasellar meningioma are exceedingly rare. There are several case reports and series describing the coexistence of a pituitary adenoma and sellar/suprasellar meningioma, although none have reported a specific diagnosis of clear cell meningioma. Therefore, this case report represents the first description of a collision tumor consisting of a gonadotroph adenoma with a coexisting clear cell meningioma without a dural tail, the latter of which represented a significant diagnostic challenge.

Sellar or suprasellar meningiomas can closely mimic pituitary adenomas on neuroimaging. Therefore, a definitive preoperative diagnosis of a pituitary adenoma and parasellar meningioma is not often possible on MRI. In considering our patient’s preoperative MRI, in retrospect it may have been possible to appreciate a small layer of hyperintense signal on T1 postcontrast sequences between the intrasellar and suprasellar tumor components, which may have delineated the distinct border of both the adenoma and meningioma. However, this layer, representing the diaphragma sella, was not found to be completely contiguous on the sagittal MRI, and was therefore considered an unreliable measure for confirming the radiographical appearance of a collision tumor.

Definitive diagnosis of a collision tumor requires histologic evaluation of the resected tumor specimen by the...
<table>
<thead>
<tr>
<th>Study</th>
<th>Patient age (y)</th>
<th>Sex</th>
<th>Clinical presentation</th>
<th>Tumor type 1</th>
<th>Tumor type 2</th>
<th>Surgical approach</th>
<th>Additional comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamada et al<sup>2</sup></td>
<td>52</td>
<td>F</td>
<td>Headache with disturbances in visual acuity and galactorrhea</td>
<td>PA</td>
<td>Meningioma</td>
<td>Frontal osteoplastic craniotomy</td>
<td>Complete relief of headache and visual disturbance, with galactorrhea controlled with bromocriptine</td>
</tr>
<tr>
<td>Tajika et al<sup>3</sup></td>
<td>56</td>
<td>F</td>
<td>Mild acromegaly</td>
<td>GH-secreting</td>
<td>Gangliocytoma</td>
<td>Transsphenoidal excision</td>
<td>N/A</td>
</tr>
<tr>
<td>Prevedello et al<sup>4</sup></td>
<td>52</td>
<td>F</td>
<td>Continuous headache with right eye temporal visual field loss</td>
<td>PA</td>
<td>Meningioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Postoperative resolution of headache, complete resolution of visual loss, and preservation of preoperative pituitary function</td>
</tr>
<tr>
<td>Karavitaki et al<sup>5,a</sup></td>
<td>50 54</td>
<td>M</td>
<td>Headache, sleep difficulties, decreased libido, hot flashes, proximal muscle weakness, central weight gain, back/hip pain, easy bruising, hypertension, decreased libido, erectile dysfunction, insomnia, and nocturia</td>
<td>Gonadotrophic PA</td>
<td>Adamantinomatous craniopharyngioma Rathke’s cleft cyst</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Postoperative hypogonadism requiring testosterone replacement therapy Postoperative diabetes insipidus and panhypopituitarism</td>
</tr>
<tr>
<td>Moshkin et al<sup>6</sup></td>
<td>12</td>
<td>M</td>
<td>Incidental finding</td>
<td>Silent PA subtype 3</td>
<td>Adamantinomatous craniopharyngioma</td>
<td>Right craniotomy</td>
<td>N/A</td>
</tr>
<tr>
<td>Koutouroussi et al<sup>7,a</sup></td>
<td>42 60 47 38 52 49 76 46</td>
<td>F M F M F M F</td>
<td>Cushing’s disease Hypogonadism and hyperprolactinemia Acromegaly and hypopituitarism Acromegaly, headache, and decreased libido Acromegaly, amenorrhea, and hyperprolactinemia Hypopituitarism Acromegaly and headache</td>
<td>ACTH-secreting PA Nonfunctioning PA GH-secreting PA</td>
<td>Rathke’s cleft cyst Neurosarcoi-dosis Gangliocytoma Schwan-noma Gangliocytoma Prolactinoma Rathke’s cleft cyst Gangliocytoma</td>
<td>Transsphenoidal excision</td>
<td>Postoperative hypocortisolism Persistent hypogonadism and tumor recurrence requiring reoperation Persistent hypopituitarism N/A Tumor recurrence requiring somatostatin analog treatment and radiotherapy Required dopamine agonist for persistent hyperprolactinemia Required hormone</td>
</tr>
<tr>
<td>Study</td>
<td>Patient age (y)</td>
<td>Sex</td>
<td>Clinical presentation</td>
<td>Tumor type 1</td>
<td>Tumor type 2</td>
<td>Surgical approach</td>
<td>Additional comment</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Rivera et al⁸</td>
<td>58</td>
<td>M</td>
<td>Rapid-onset diplopia</td>
<td>Prolactinoma</td>
<td>Plasmacytoma (multiple myeloma)</td>
<td>Stereotactic radiosurgery + cabergoline (prolactinoma)</td>
<td>Postoperative secondary hypogonadism and hypothyroidism</td>
</tr>
<tr>
<td>Sahli et al⁹</td>
<td>74</td>
<td>M</td>
<td>Progressive neuro-ophthalmologic deterioration</td>
<td>Gonadotropic PA</td>
<td>Osteochondroma</td>
<td>Endoscopic transsphenoidal excision with adjuvant radiotherapy</td>
<td>Partial residual pituitary insufficiency with persistent FSH level elevation</td>
</tr>
<tr>
<td>Jin et al¹⁰</td>
<td>37</td>
<td>F</td>
<td>Intermittent left eye blurring and headache</td>
<td>PA</td>
<td>Craniopharyngioma</td>
<td>Transsphenoidal excision (primary tumor) Interhemispheric transcallosal approach (residual tumor)</td>
<td>Transient postoperative diabetes insipidus and hyponatremia</td>
</tr>
<tr>
<td>Mahvash et al¹¹</td>
<td>36</td>
<td>F</td>
<td>Frontal headache with visual field disturbance in the right eye</td>
<td>PA</td>
<td>Meningioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Gross total resection with sufficient decompression of the optic apparatus</td>
</tr>
<tr>
<td>Karsy et al¹²</td>
<td>70</td>
<td>F</td>
<td>Altered mental status, mutism, and incontinence</td>
<td>PA</td>
<td>Meningioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Discharged home with permanent ventriculoperitoneal shunt and no significant neurological deficits</td>
</tr>
<tr>
<td>Matyja et al¹³,¹⁴</td>
<td>51, 59, 58, 63</td>
<td>F, M, F</td>
<td>Acromegaly and menstrual irregularities, Headache and visual disturbances, Headache and diplopia, Acromegaly, headache, and sleep apnea syndrome</td>
<td>Somatotroph PA, Somatotroph PA, Somatotroph PA, Somatotroph PA</td>
<td>Gangliocytoma, Gangliocytoma, Gangliocytoma, Gangliocytoma</td>
<td>Transsphenoidal excision with adjuvant radiosurgery, Endoscopic transsphenoidal excision, Transsphenoidal excision, Transsphenoidal excision</td>
<td>Persistent postoperative acromegaly with hypopituitarism, N/A, N/A, N/A</td>
</tr>
<tr>
<td>Lim et al¹⁴</td>
<td>65</td>
<td>F</td>
<td>Visual disturbances and vertigo</td>
<td>Nonfunctioning PA</td>
<td>Meningioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Improvement in visual symptoms with normal postoperative hormonal studies</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Patient age (y)</th>
<th>Sex</th>
<th>Clinical presentation</th>
<th>Tumor type 1</th>
<th>Tumor type 2</th>
<th>Surgical approach</th>
<th>Additional comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ban et al15</td>
<td>74</td>
<td>M</td>
<td>Bilateral retro-orbital pain, left-sided ptosis, diplopia, headache, and nausea</td>
<td>FSH-secreting PA</td>
<td>DLBCL</td>
<td>Endoscopic transsphenoidal excision (PA) Chemotherapy (DLBCL)</td>
<td>N/A</td>
</tr>
<tr>
<td>Heng et al16</td>
<td>46</td>
<td>F</td>
<td>Headache and decrease in visual acuity</td>
<td>Nonfunctioning PA</td>
<td>Gangliocytoma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Required Gamma Knife radiosurgery due to tumor recurrence</td>
</tr>
<tr>
<td>Zhao et al17,a</td>
<td>58</td>
<td>F</td>
<td>Acromegaly</td>
<td>GH-secreting PA</td>
<td>Meningioma</td>
<td>Transsphenoidal excision (PA) Craniotomy (meningioma) Transsphenoidal excision (failed) with subsequent right ptoral craniotomy with tumor resection</td>
<td>Continuous postoperative treatment with cabergoline Postoperative improvement in vision with no evidence of tumor recurrence</td>
</tr>
<tr>
<td>Amirjamsheidi et al18,a</td>
<td>37</td>
<td>F</td>
<td>Oligomenorrhea, headache, diplopia, and progressive visual impairment Acromegaly, decreased visual acuity with bitemporal hemianopsia</td>
<td>Prolactinoma</td>
<td>Meningioma</td>
<td>Craniotomy</td>
<td>Postoperative central adrenal insufficiency and permanent diabetes insipidus No tumor recurrence</td>
</tr>
<tr>
<td>Levitus and Charitou19</td>
<td>44</td>
<td>F</td>
<td>Incidental finding following head injury</td>
<td>GH-secreting PA</td>
<td>Gangliocytoma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Transient postoperative central adrenal insufficiency and permanent diabetes insipidus No tumor recurrence</td>
</tr>
<tr>
<td>Malli et al20</td>
<td>64</td>
<td>M</td>
<td>Bitemporal hemianopsia</td>
<td>Pilocytic astrocytoma</td>
<td></td>
<td>Endoscopic transsphenoidal excision with subfrontal craniotomy</td>
<td>N/A</td>
</tr>
<tr>
<td>Miyazaki et al21</td>
<td>48</td>
<td>M</td>
<td>Memory disturbance, depression, and hemiplegia</td>
<td>PA</td>
<td>Adamantinomatous craniopharyngioma</td>
<td>Transsphenoidal excision (PA) Left frontoparietal craniotomy with tumor resection and cyst drainage (craniopharyngioma)</td>
<td>Improvement in all symptoms</td>
</tr>
<tr>
<td>Snyder et al22</td>
<td>49</td>
<td>F</td>
<td>Headache, dizziness, blurred vision, and nausea</td>
<td>Corticotropic PA</td>
<td>Craniopharyngioma</td>
<td>Endoscopic transsphenoidal excision (primary tumor) Bifrontal inter-hemispheric</td>
<td>Postoperative CSF leak</td>
</tr>
<tr>
<td>Study</td>
<td>Patient age (y)</td>
<td>Sex</td>
<td>Clinical presentation</td>
<td>Tumor type 1</td>
<td>Tumor type 2</td>
<td>Surgical approach</td>
<td>Additional comment</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>de Vries et al<sup>23</sup></td>
<td>75</td>
<td>F</td>
<td>Depression, fatigue, unintended weight loss</td>
<td>Nonfunctioning PA</td>
<td>Meningothelial meningioma</td>
<td>Transcallosal approach (residual tumor)</td>
<td>Improvement of symptoms</td>
</tr>
<tr>
<td>Bteich et al<sup>24</sup></td>
<td>35</td>
<td>M</td>
<td>Headache, progressive visual disturbance</td>
<td>Nonfunctioning PA</td>
<td>Papillary craniopharyngioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>N/A</td>
</tr>
<tr>
<td>de Almeida Verdolín et al<sup>25,a</sup></td>
<td>Median = 60 (33–78)</td>
<td>3 F 2 M</td>
<td>Progressive visual field loss and/or headache</td>
<td>PA</td>
<td>Rathke's cleft cyst</td>
<td>Endoscopic transsphenoidal excision</td>
<td>N/A</td>
</tr>
<tr>
<td>Gezer et al<sup>26</sup></td>
<td>34</td>
<td>F</td>
<td>Menstrual irregularities, proximal muscle weakness, and rapid weight gain</td>
<td>Corticotropic PA</td>
<td>Meningioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Postoperative resolution of weight gain, menstrual irregularities, and proximal muscle weakness</td>
</tr>
<tr>
<td>Shareef et al<sup>27</sup></td>
<td>60</td>
<td>M</td>
<td>Prior history of PA with resection, nonremitting bitemporal visual deficit</td>
<td>PA</td>
<td>Adamantinomatous craniopharyngioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Transient postoperative diabetes insipidus</td>
</tr>
<tr>
<td>Bao et al<sup>28,a</sup></td>
<td>62 56</td>
<td>F F</td>
<td>Progressive visual loss in left eye Headache with progressive bilateral visual loss</td>
<td>Nonfunctioning PA Nonfunctioning PA</td>
<td>Meningioma Meningioma</td>
<td>Endoscopic transsphenoidal excision Transmaxillary-transpterygoid approach</td>
<td>Improvement in visual acuity postoperatively</td>
</tr>
<tr>
<td>Ren et al<sup>29</sup></td>
<td>41</td>
<td>M</td>
<td>Intermittent headache</td>
<td>Lactotroph PA</td>
<td>DLBCL</td>
<td>Endoscopic transsphenoidal excision (PA) Chemotherapy (DLBCL)</td>
<td>No tumor recurrence</td>
</tr>
<tr>
<td>Schöning et al<sup>1,a</sup></td>
<td>Mean = 53.8 ± 18.5</td>
<td>N/A</td>
<td>N/A</td>
<td>Double PitNET (n = 38) Triple PitNET (n = 2) PitNET (n = 34) PitNET (n = 6) PitNET (n = 5) PitNET (n = 12)</td>
<td>Gangliocytoma Meningioma Posterior lobe tumor Metastasis</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Lu et al<sup>30</sup></td>
<td>61</td>
<td>F</td>
<td>Progressive decline of binocular vision</td>
<td>PA</td>
<td>Meningioma</td>
<td>Endoscopic transsphenoidal excision</td>
<td>Stable visual acuity without tumor recurrence</td>
</tr>
</tbody>
</table>

Abbreviations: ACTH, adrenocorticotropic hormone; DLBCL, diffuse large B-cell lymphoma; F, female; FSH, follicle stimulating hormone; GH, growth hormone; M, male; PA, pituitary adenoma; PitNET, pituitary neuroendocrine tumor.

^aCase series
Although more common in young adults and children, sellar region clear cell meningioma was diagnosed in 11- to 79-year-old patients.33,42–46 Additionally, in all but one case, a dural attachment was seen,42–46 while a single case described the occurrence of an intrasellar clear cell meningioma without a dural attachment.33 Therefore, given the rarity of clear cell meningioma arising as a single-region tumor, this further emphasizes the diagnostic conundrum seen in our case where a gonadotropic adenoma was simultaneously diagnosed with a parasellar clear cell meningioma without the classic dural attachment.

The association between pituitary adenomas and intracranial meningiomas has been widely described and are thought to arise as a delayed complication following radiotherapy for pituitary lesions.47 However, collision tumors composed of simultaneously occurring pituitary adenoma and meningioma are difficult to explain, as the underlying etiology is not understood. One theory suggests that in patients with a growth hormone (GH) secreting macroadeno- noma, GH excess can induce meningioma growth resulting in collision tumor formation, although this has never been confirmed.48,49 Nonetheless, the co-occurrence of a pituitary adenoma and parasellar meningioma is likely an incidental finding of two common lesions within the sellar region.
Conclusion

We describe the diagnosis and treatment of a collision tumor composed of a pituitary adenoma and sellar region meningioma in a 47-year-old-man. Collision tumors arising in the sellar/suprasellar region of the brain are exceedingly rare entities, currently with unclear etiologies. In the absence of reliable radiographic measures to diagnose collision tumors using neuroimaging, histological evaluation remains the gold standard. A multidisciplinary approach between neurosurgeons and neuropathologists is critical for the management of these patients.

Informed Consent
Informed consent was deemed unnecessary for this work by the Colorado Multiple Institutional Review Board.

Conflict of Interest
None declared.

References

16 Heng UJ, Jia D, Gong L, Zhang W, Ma J, Qu Y. Endoscopic endonasal resection of a mixed lesion of gangliocytoma and nonfunctioning pituitary adenoma. World Neurosurg 2017;106:1050.e1–1050.e6
28 Bao YY, Wu X, Ding H, Hong T. Endoscopic endonasal resection of coexisting pituitary adenoma and meningioma: two cases’ report and literature review. Neurochirurgie 2021;67(06):611–617
39 Spallone A. Meningioma as a sequel of radiotherapy for pituitary adenoma. Neurochirurgia (Stuttg) 1982;25(02):68–72
40 Zhang H, Ma L, Shu C, Dong LQ, Ma YQ, Zhou Y. Spinal clear cell meningiomas: clinical features and factors predicting recurrence. World Neurosurg 2020;134:e1062–e1076