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Introduction

Glioblastoma is the utmost common and destructive prima-
ry malignant brain tumor seen in adults including average
overall survival (OS) of 10 to 20 months.1–4 Glioblastoma
comprises an eminently heterogeneous collection of pro-
truding malignant tumors of the brain.5

In a nutshell, the abovementioned research demonstrated
that nearly all tumors suppress periodic molecular modifi-
cations eradicating core pathways engaged in the control of
growth and deoxyribonucleic acid repair. It is acknowledged
that glioblastomas are described by considerable intratumor
and intertumor genomic heterogeneity.6–10Depending upon
the findings of the Cancer Genome Atlas, there are four
distinctive subdivisions of glioblastomas. These are the
neural, proneural, mesenchymal, and classical subtypes.
The neural subdivision illustrates 16% of glioblastoma. The

neural subdivision is represented by the expression of vari-
ous neuron markers like GABRA1, SLC1A5, and NEFL. The
proneural subdivision demonstrates mutation in platelet-
derived growth factor receptor A (PDGFRA). The classical
subdivision demonstrated CDKN2A deletion and epidermal
growth factor receptor (EGFR) amplification. The mesenchy-
mal subdivision demonstrates mutations in phosphatase
and tensin homolog (PTEN) and NF1 (neurofibromatosis
type 1).11

In this review, literature or information on various tar-
geted therapy for glioblastoma is discussed. English language
articles were scrutinized in plentiful directory or databases
like PubMed, ScienceDirect,Web of Sciences, Google Scholar,
and Scopus. The important keywords used for searching
databases are “Glioblastoma,” “Targeted therapy in glioblas-
toma,” “Therapeutic drugs in glioblastoma,” and “Molecular
targets in glioblastoma.”
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Abstract Glioblastoma is remarkably periodic primary brain tumor, characterizing an eminently
heterogeneous pattern of neoplasms that are utmost destructive and threatening
cancers.
An enhanced and upgraded knowledge of the various molecular pathways that cause
malignant changes in glioblastoma has resulted in advancement of numerous bio-
markers and the interpretation of various agents that pointedly target tumor cells and
microenvironment. In this review, literature or information on various targeted therapy
for glioblastoma is discussed. English language articles were scrutinized in plentiful
directory or databases like PubMed, ScienceDirect, Web of Sciences, Google Scholar,
and Scopus. The important keywords used for searching databases are “Glioblastoma,”
“Targeted therapy in glioblastoma,” “Therapeutic drugs in glioblastoma,” and “Molec-
ular targets in glioblastoma.”
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Various Molecular Targeted Therapeutics
for Glioblastoma

Receptor Tyrosine Kinases
They are types of transmembrane proteins. It contains a
single transmembrane helix, extracellular ligand-binding
domain, and intracellular catalytic domain. The receptor
tyrosine kinase group consists of platelet-derived growth
factors, fibroblast growth factor receptors (FGFRs), EGFRs,
and hepatocyte growth factor receptors. Beneath typical
physiological status, receptor tyrosine kinases are implicated
in persisting cellular homeostasis by controlling cell–cell
communication, cell proliferation, survival, differentiation,
and migration. Therefore, dysregulation of the receptor
tyrosine kinases pathway performs a crucial aspect in the
initiation and progression of glioblastoma.12–14

Epidermal Growth Factor Receptor
Genomic interpretation identified that 57% of glioblastoma
cells harbor EGFR genetic mutations. Overexpression and
amplification of EGFRs were recognized in 60 and 40% of
cases of primary glioblastoma accordingly. Overexpression
and amplification result in fundamental receptor activation
and intensify the survival, proliferation, and resistance to
therapeutics of glioblastoma cells.15–18 Different forms of
genetic mutation were also recognized which include point
mutations and rearrangement of EGFRs.19

The utmost prevalent approach for targeting EGFRs is by
way of the adoption of monoclonal antibodies. Various anti-
EGFR antibodies have been established since cetuximab (the
first chimeric antibody). Cetuximab and panitumumab do
not demonstrate encouraging outcomes. Depatuxizumab
and nimotuzumab demonstrate survival advantages when
mixed with radiotherapy and chemotherapeutic temozolo-
mide (TMZ) accordingly.20–22

EGFRs are also aimed by prohibitions of the activity of
tyrosine kinase. Different inhibitors have been graded in
clinical research with the least possible or no advantage like
gefitinib, erlotinib, and dacomitinib. Nonetheless, utilizing
afatinib leads to an upsurge in progression-free survival
(PFS) in those individuals that demonstrate overexpression
of EGFRs.23

PDGFR
PDGFR is one of the targeted therapeutics in the glioblasto-
ma–proneural subdivision. Gene amplification in PDGFR is
observed in 15% of cases of glioblastoma. In different grades
of gliomas, overexpression of PDGFR is observed and is linked
with poor prognosis. Until now, various multikinase inhib-
itors like imatinib, sunitinib, and dasatinib have not demon-
strated encouraging clinical advantages.24,25

MET
The hepatocyte growth factor receptor is encoded by the
MET gene, which is expected to perform an influential
function in the invasion, recurrence, migration, and drug
resistance of glioma cells.26,27 Approximately 30% of glio-
blastoma patients are represented byoverexpression ofMET.

The usefulness of the rilotumumab antibody only had no
action on restricting the advancement of glioblastoma. Clin-
ical research of integrated antibody onartuzumab and anti-
vascular drugs proved that there was no meaningful
advantage for recurrent glioblastoma patients. Cabozantinib,
an MET inhibitor, was moderately active in individuals with
recurrent glioblastoma.27–31

PI3K/AKT/mTOR Pathway
It is the utmost prevalent alteration pathway in individuals
with glioblastoma. PI3K activation in glioblastoma is chiefly
because of the alteration of PTEN.32,33

Buparlisib, a PI3K pan inhibitor, was also demonstrated to
be incompetent in contrast to recurrent glioblastoma in
research, either as an individual dose or linked with lomus-
tine or carboplatin.34,35

Fibroblast Growth Factor Receptor
It is comprehensively expressed in glioblastoma, but its
therapeutic worth may be confined to the limited count of
individuals with FGFR-TACC fusion. In the current research,
utilization of dovitinib was incompetent in increasing the
survival of individuals whether linked with antivascular
therapy or not.36–38

BRAF Mutation
BRAF takes part in Mek/Erk pathway activation and encour-
ages the proliferation of the cell. BRAF alteration is noticed in
different varieties of cancer and is demonstrated to be a
trustworthy target.39–42

Neurotrophic Tyrosine Receptor Kinases
Three distinctive genes encode the neurotrophic tyrosine
receptor kinases (NTRKs). These genes are NTRK3, NTRK2,
and NTRK1. The NTRK gene genomic rearrangement results
in the union of the gene, which may provoke the TRK
pathway activation. This gene fusion occurrence is rarely
seen in glioblastoma. Entrectinib was competent in the
therapeutics of infantile glioblastoma. Larotrectinib was
administered in a lady with infantile glioblastoma and the
therapeutic result was noteworthy.43–46

The Retinoblastoma Pathway
The cell cycle regulation of the retinoblastoma protein (pRB)
pathway is reciprocated because of CDK4/6 amplification,
CDKN2A/B homozygous deletion, and modification of the
RB1 gene. In phase II research, palbociclib has shown an
unsatisfying outcome. Ribociclib was also incompetent.47–49

Proteasome
Proteasome encourage apoptosis by controlling p53, which
alarmingly controls the cell cycle and alters drug resistance.
Presently, various clinically recognized proteasome inhibi-
tors include ixazomib, bortezomib, and marizomib. Borte-
zomib when combined with vorinostat shows inadequate
results in recurrent glioblastoma. But when bortezomib is
mixedwith definitive radiotherapy, it shows hopeful survival
rates and is well accepted. Disulfiram has advantageous
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blood–brain barrier penetration competence and improved
drug resistance to utilize its antitumor outcome in recently
diagnosed glioblastoma and recurrent glioblastoma
models.50–54

Vascular Endothelial Growth Factor
Glioblastoma is described by irregularity in vascular prolif-
eration. The vascular endothelial growth factor (VEGF) is
eminently expressed in glioblastoma and advocates the
anomalous proliferation of tumors. VEGFR1 and VEGFR2
pathways are recommended as a significant determinant
of tumor survival in glioblastoma.55 Bevacizumab is attached
to endothelial cells and suppresses angiogenesis. In phase II
research, bevacizumab demonstrates meaningful anti-glio-
ma and biological activity, increased OS, and radiation
response rate in recently diagnosed cases of glioblastoma
and recurrent glioblastoma. It is also observed that bevaci-
zumab in phase III clinical research substantially enhances
PFS.56–60

Bevacizumab along with TMZ demonstrates great compe-
tence and resistance. Etoposide shows an identical outcome
to bevacizumab monotherapy, but etoposide displays higher
toxicity.61–63 Additional VEGF such as cediranib has demon-
strated meaningful potency in phase II clinical research of
recurrent glioblastoma. It is observed that cediranib advo-
cates blood perfusion and extended the OS in recently
diagnosed cases of glioblastoma.64,65

Axitinib could be a promising consolidation ally with
immunotherapy. Additional inhibitors such as aflibercept
also downregulate the VEGF activity.66,67

Integrin
Integrins perform in signal transduction participating in
various cellular processes. Integrins also arbitrate cellular
transmission inside the extracellular matrix throughout
motility, invasion, migration, angiogenesis, and adhesion.
In endothelial cells, integrins αvβ5 and αvβ3 are eminently
expressed and recognized as therapeutic targets in
glioblastoma.68,69

Programmed Cell Death Protein 1
One approach to cancer immunotherapy is to forbid the
communication among programmed cell death protein 1
(PD-1) on T cells and PD-1 ligand on host or tumor cells.
Pembrolizumab has inadequate effectiveness in earlier ther-
apeutics of glioblastoma, exclusive of those cases with
definitive mismatch repair defects.70–73 Nivolumab, when
mixedwith bevacizumab and chemoradiotherapy in recently
diagnosed glioblastoma individuals along with MGMT pro-
moter unmethylation, was unsuccessful.74

Lymphocyte-Activation Gene 3
Lymphocyte-activation gene 3 (LAG-3) results in an immune
outbreak of tumor cells. LAG-3 is mainly seen in activated
immune cells. LAG-3 is consistently expressed in T cells.
Therefore, LAG-3 prohibitor evolves to a pleasant immune
modulating agent only or in association with additional
immune checkpoint inhibitors. In glioblastoma, LAG-3 is

expressed along with CD8A, suggesting that LAG-3 targeted
therapy in glioblastoma with sufficient CD8þ T cell infiltra-
tion may be hopeful.75–79

CD73
The nasal application of cationic nanoemulsion when blend-
ed with CD73-siRNA conferred hopeful anti-CD33 outcomes
in glioblastoma model.80

V-Domain Immunoglobulin Suppressor of T Cell
Activation
It has been originally acknowledged for its meaningful
appearance in immunosuppression. V-domain immunoglob-
ulin suppressor of T cell activation (VISTA) complexly and
reciprocally perform as ligand and receptor in the positive
and negative control of cancer immunity.81–83 IgSF11 (im-
munoglobulin superfamily 11 gene), a VISTA ligand, dem-
onstrates raised expression notably in high-grade glioma and
corresponds with poor prognosis, implying the promising
prognostic significance of IgSF11 and VISTA.84

CD70
CD70 is eminently overexpressed in cells of recurrent glioma
in comparison to ordinary tissue and is linked with inade-
quate survival. Therefore, CD70 is suggested to bring about T
cell apoptosis or debilitation and initiate regulatory T cells to
intercede immunosuppression.85,86

Tumor-Associated Macrophage Therapy
Minocycline could restrain the expression of microglial
matrix metalloproteinases andweaken the glioma intrusion.
In addition, cyclosporine A demonstrated effectiveness in
debilitating the angiogenesis and survival of glioma by
restraining the microglia infiltration. Propentofylline was
also demonstrated to lower the growth of tumors in glio-
blastoma by precisely targeting microglia.87–90

Conclusion

The prediction of glioblastoma stays worse and poor re-
gardless of radiotherapy, aggressive surgery, and chemo-
therapies. Furthermore, numerous innovative introductions
in elementary and translational researches were made in
recent times. Various targeted therapies are being exten-
sively investigated in various clinical researches. Promising
advancement in glioblastoma therapeutics will apparently
depend on collection of correct association of various
targeted agents collectively with different multimodal
therapy.
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