Inhaled Treprostinil-Prodrug Lipid Nanoparticle Formulations Provide Long-Acting Pulmonary Vasodilation

Authors
Franziska G. Leifer1,#,*, Donna M. Konicek1,#,*, Kuan-Ju Chen1, Adam J. Plaunt1, Dany Salvail2, Charles E. Laurent2, Michel R. Corboz1, Zhili Li1, Richard W. Chapman1, Walter R. Perkins1, Vladimir S. Malinin1

Abbreviations
CxTR Abbreviation for treprostinil produg, where x represents the length of the attached alkyl chain (C2TR = ethyl treprostinil, C3TR = propyl treprostinil, etc.)
DP1 Prostaglandin D2 receptor 1
IP Prostacyclin receptor or prostaglandin I2 receptor
EP1 Prostaglandin E2 receptor 1
EP2 Prostaglandin E2 receptor 2
MMAD Mass Median Aerodynamic Diameter
LNP Lipid nanoparticle
PAH Primary pulmonary arterial hypertension
TEM Transmission Electron Microscopy
TPD Treprostinil prodrug
TRE Treprostinil

Introduction
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary arterial pressure due to occluded and/or constricted pulmonary vasculature. Elevated pulmonary arterial pressure frequently overburdens the heart to the point of right ventricular hypertrophy, ventricular failure, and ultimately death [2, 3]. Even with current therapies, the 5 year survival rate of idiopathic PAH patients remains low at 65% according to the US REVEAL registry [4].

There are several approved therapies to treat PAH, most of which aim to reduce pulmonary arterial pressure primarily through pulmonary vasodilation. Medications used to achieve this include prostaglandin receptor agonists (including prostacyclins, prostacyclin analogues, and IP receptor-specific agonists) [2, 5, 6], endothelin receptor antagonists [2, 5], phosphodiesterase inhibitors [2, 5], and

ABSTRACT
Treprostinil (TRE), a prostanoid analogue approved in the USA for the treatment of pulmonary arterial hypertension, requires continuous infusion or multiple dosing sessions per day for inhaled and oral routes of administration due to its short half-life. The inhaled drug is known to induce adverse systemic and local effects including headache, nausea, cough, and throat irritation which may be due at least in part to transiently high drug concentrations in the lungs and plasma immediately following administration [1]. To ameliorate these side effects and reduce dosing frequency we designed an inhaled slow-release TRE formulation. TRE was chemically modified to be an alkyl produg (TPD) which was then packaged into a lipid nanoparticle (LNP) carrier. Preclinical screening in a rat model of hypoxia-induced pulmonary vasoconstriction led to selection of a 16-carbon alkyl ester derivative of TRE. The TPD-LNP demonstrated approximately 10-fold lower TRE plasma Cmax compared to inhaled TRE solution while maintaining an extended vasodilatory effect. The favorable PK profile is attributed to gradual dissociation of TPD from the LNP and subsequent conversion to TRE. Together, this sustained presentation of TRE to the lungs and plasma is consistent with a once- or twice-daily dosing schedule in the absence of high Cmax-associated adverse events which could provide patients with an improved treprostinil therapy.

These authors contributed equally to this work.
* Franziska G. Leifer and Donna M. Konicek are co-first authors.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
soluble guanylate cyclase activators[5]. Prostacyclin analogues, in particular, are attractive therapies due to their potent vasodilatory activity, ability to inhibit smooth muscle proliferation, and anti-platelet effects [2, 5, 7]. On the molecular level, the prostacyclin analogues iloprost and treprostinil bind strongly to cell-surface receptors on smooth muscle cells, including prostaglandin 12 receptor (IP) (both iloprost and treprostinil), prostaglandin E2 receptor 1 (EP1) (iloprost only), and prostaglandin E2 receptor 2 (EP2) and prostaglandin D2 receptor 1 (DP1) (treprostinil only) [5, 7]. These receptors couple to stimulatory G proteins (Gαs) to activate adenylyl cyclase (AC), which produces cyclic AMP (cAMP) to alter intracellular calcium levels and induce vasodilation [4].

Currently, three prostacyclin analogues are approved to treat PAH in the US: epoprostenol, iloprost, and treprostinil (TRE) [2]. Epoprostenol was the first approved prostacyclin analogue on the US market; however, it has known chemical instability and demonstrates a short plasma half-life requiring continuous administration. Iloprost, administered by inhalation, also suffers from a short half-life and requires frequent dosing of 6 to 9 times daily [8]. TRE was developed as a more stable alternative [2]. Currently, TRE is available commercially as a continuous injection (Remodulin®, a solution for inhalation (Tyvaso®), and as an oral tablet (Orenitram®) [9]. Remodulin is administered by continuous infusion either intravenously (i.v.) or subcutaneously (s.c.), with each raising concerns (e.g., for line infection (i.v.) or infusion site pain (s.c.)) [9, 10]. While Tyvaso® provides local delivery to the lung, dosing is q.i.d. [1]. Although Orenitram® features the conveniences of oral administration it also requires repeated daily dosing (recommended b.i.d or t.i.d.) [11, 12]. Moreover, patients treated with Tyvaso and Orine tram experience adverse effects which are due to systemic exposure and in the case of Tyvaso, local adverse effects of cough and throat irritation [1, 12].

Here, we describe the development and preclinical evaluation of a sustained-release TRE formulation for delivery by inhalation. Our rationale was that by delivering drug directly to the lung with subsequent slow release of the active form the systemic adverse effects associated with high plasma Cmax values could be reduced. Also, the airway exposure to active drug during inhalation would be reduced resulting in fewer adverse local effects. To achieve these goals, we synthesized a series of treprostinil prodrugs (TPDs) and packaged them into lipid nanoparticle (LNP) carriers. We characterized the in vitro conversion of TPD to TRE as a function of ester alkyl chain length and evaluated how it affected plasma concentrations of TRE in vivo. We confirmed efficacy using a cAMP activity assay in CHO-K1 cells and using a hypoxia-induced rat model of pulmonary arterial vasoconstriction.

Materials and Methods

Ethical conduct

The treatment of all animals used in these studies was conducted per the Canadian Council on Animal Care (CCAC) guidelines. The experimental protocols for rat in vivo studies were approved by the CCAC Committee at ITR Therapeutique Inc., Sherbrooke, Quebec, Canada; Rat, dog, and monkey lung tissues for in vitro prodrug conversion studies were provided by ITR Laboratories Canada, Montreal, Quebec, Canada. All experiments involving animals were carried out in compliance with the ‘Guide for the Care and Use of Laboratory animals’ published by the National Academy of Sciences.

Materials

Treprostinil was obtained from Chirogate International (Taoyuan, Taiwan). Propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, tetradecanol, hexadecanol, 1,4 dioxane, amberlyst-15 resin, acetonitrile, formic acid, trimethylamine, squalane, and methanol were acquired from Sigma (St. Louis, MO, USA). Cholesterol conjugated to polyethylene glycol 2000 MW (Chol-PEG 2000) was acquired from NOF America (White Plains, NY, USA). 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was acquired from Avanti Polar Lipids (Alabaster, Alabama, USA). Ethyl Alcohol, 200 Proof was acquired from Pharmaco Aaper (Brookfield, CT, USA). Phosphate buffered saline (PBS) was acquired from Mediatech (Manassas, VA, USA).

Treprostinil prodrug synthesis

A small library of TPDs was prepared via esterification of treprostini cil acid catalyzed by the acidic resin Amberlyst-15. Briefly, treprostinil acid and linear alcohols of various alkyl chain length were combined in a 1:10 molar ratio in the presence of 1,4-dioxane; dioxane was omitted for short chain alcohols that were a liquid at room temperature. Amberlyst-15 resin was then added to the treprostinil/alcohol mixture to catalyze the esterification reaction (1 g resin per 40 mg TRE). The reaction mixture was placed on an incubated shaker (MaxQ 4450, ThermoFisher Scientific, Waltham, MA, USA) set to 50 rpm and 40 °C for ~14 h. A solid-liquid extraction using acetonitrile was used to remove the desired product from the resin catalyst. Crude product was purified using preparative high-performance liquid chromatography (HPLC) (100 × 21.2 mm ACE CN 5μm column) to yield the desired products (typically thick colorless oils for short chain TPD or white waxy solids for longer chain TPDs). 1H and 13C NMR structural characterization was performed for all synthesized compounds to confirm their identity. Purity was confirmed by HPLC-UV.

TPD to TRE conversion in lung tissue homogenate

Study was performed at ITR Laboratories (Montreal, Canada). Lung tissue was retrieved from healthy animals and homogenized with PBS at 1:5 tissue: PBS ratio. Lungs were used from Sprague Dawley rats, Beagle dogs, and Cynomolgus monkeys. Total protein concentration was adjusted to 10 mg/mL and a 10 μM stock solution of TPD or TRE in DMSO was added into a 1 mL lung homogenate to achieve a final concentration of 200 nM. The mixture was incubated at 37 °C for 0.25, 0.5, 1, 2, and 4 h. Post incubation, TPD and TRE were extracted using acetonitrile with 1% formic acid and quantified by HPLC/MS/MS. 1-Naphthoxyacetic Acid was used as an internal standard. The rate of TPD conversion was determined as the slope at zero time using nonlinear exponential regression (1 phase association) of all data points by GraphPad Prism.

TPD-LNP manufacturing

TPD-LNPs were made using a proprietary alcohol injection procedure for the one-step production of monodisperse nanoscale TPD-LNPs. A center stream of alcohol-solvated lipid containing TPD,
squalane, DOPC, and Cholesterol-PEG 2000 was impinged with adjacent streams of aqueous buffer positioned perpendicular to the lipid feed line in a mixing cross. As prodrugs and lipid excipients diffused from the alcohol stream into surrounding aqueous buffer (antisolvent), they began to precipitate, facilitating the spontaneous formation of nanoscale TPD-LNPs. By controlling the magnitude and relative ratios of the TPD-LNP precursor flow inputs, the particle size and size uniformity of the product were easily and reproducibly tuned.

TPD-LNP particle size characterization

Particle size characteristics were determined by dynamic light scattering (DLS) using a Wyatt Technology Mobius (Wyatt Technologies, Santa Barbara, CA, USA) fitted with a disposable microcuvette insert. Dynamics® software (Wyatt Technologies, Santa Barbara, CA, USA) was used for data acquisition and analysis.

TPD-LNP Imaging by Cryo-TEM

To prepare cryo-TEM grids, 2.5 μL of sample was applied to a Quantifoil grid, blotted for 15 s with an FEI vitrobot in 100 % humidity, and then plunged into liquid ethane. The image was collected on a FEI Tecnai TF20 at an accelerating voltage of 200 kV using TVIPS EM-Menu program. The instrument is equipped with a 16-megapixel CCD camera. The nominal magnification used was 50,000 x with 2 binning. These studies were performed at the Electron Imaging Center for NanoMachines and CNSI of the University of California, Los Angeles (UCLA). The center is supported by NIH (1S10RR23057 to ZHZ).

HPLC assay

TRE, TPD, and excipient concentrations were analyzed on a Waters Alliance 2695 separations module connected to a photodiode array (PDA) (Waters Corporation, Milford, MA, USA) to measure the absorbance of TRE and TPDs at 272 nm and a charged aerosol detector (CAD) (Thermo Fisher Scientific, Waltham, MA, USA) to measure the concentration of excipients. A gradient method was used for separation of the TRE, TPD, and excipients: mobile phase A (acetonitrile 25 %, methanol 25 %, water 50 %, formic acid 0.1 %, triethylamine 0.01 %) and B (acetonitrile 50 %, methanol 50 %, formic acid 0.1 %, triethylamine 0.01 %), where B increased from 40 % to 50 % from 0 to 2 min, then to 75 % by 3 min, 95 % by 11 min, and 100 % by 13 min. Mobile phase B remained at 100 % until 17 min and returned to 40 % at 17.5 min. The flow rate was 1 mL/min and the assays were run at room temperature.

cAMP assay

CHO-K1 cells (ATCC® CCL-61) were transiently co-transfected with pGloSensor™-22 F cAMP plasmid (Promega, Madison, WI, USA) and prostanoid receptor (EP2) plasmid (Origene, Rockville, MD, USA). Transfected cells were treated with 5 μM of either TRE or TPD-LNP up to 4 h. cAMP levels were measured every 5 min for the duration of the studies using a Synergy Neo plate reader (BioTek, Winooski, VT, USA) and the increase in cAMP activation was calculated relative to vehicle control. Each formulation was tested in 3 or 4 individual runs and the rate (slope) of cAMP activation was determined using linear regression of all data points during first 180 min for LNP formulations and 120 min for the micellar formulation by GraphPad Prism.

Plasma Pharmacokinetics (PK)

Plasma PK experiments in anesthetized ventilated rats were performed as follows: nebulized TRE solution and TPD formulations at a volume of 250 μL were administered over a period of approximately 1 min at 15 nmol/kg (6 μg/kg TRE equivalent) to anesthetized male Sprague Dawley rats prepared with an endotracheal tube for ventilation. The right femoral vein was cannulated to facilitate blood collections at specified time points. Terminal lung samples were taken for analysis 6 h after dosing. An Aeroneb® nebulizer and a controller (Aerogen, Galway, Ireland) were used to produce an aerosol of a mass median aerodynamic diameter (MMAD) of around 2.4 μm at a sampling rate of 2 L/min for TRE and TPD concentrations in blood plasma and lung tissue were quantified by HPLC/MS/MS analysis.

PAP measurements

Male Sprague Dawley rats were anesthetized, artificially ventilated, and prepared for measurement of mean pulmonary arterial pressure (mPAP), systemic blood pressure (mSAP), heart rate (HR), and arterial oxygen saturation (SaO2). Specifically, a catheter was surgically placed into the right femoral artery to monitor the arterial pressure throughout the procedure and a tracheotomy was performed to introduce an endotracheal tube to allow the animals to be mechanically ventilated and monitored. Pilot studies were performed to find the optimum volume (3.5–4 mL) for mechanical ventilation and fixed at a volume that produced a 10–15 cm H2O pulmonary inflation pressure for a 300–350 g rat. Following a sternotomy, the pericardium was opened to introduce a 20-gauge catheter into the root of the pulmonary artery for the measurement of pulmonary arterial pressure. Physiologic parameters were measured during normoxia (fraction of inspired oxygen [FIO2] = 0.21, SaO2 ≈ 90 %) and for 2 to 3 h during hypoxia (FIO2 = 0.10, SaO2 ≈ 50 %). Compounds were delivered via the Aeroneb® (Aerogen, Galway, Ireland) nebulizer interposed in a ventilator circuit at an estimated pulmonary dose of 6 μg/kg [13]. A total of 250 μL test article was nebulized over a period of approximately 1 min, starting 10 min after inducing hypoxia.

TRE and TPD assay in lung homogenate and plasma samples

TRE and TPD were measured in plasma PK samples and lung homogenate ex vivo samples by LC/MS/MS assays. The TRE assay had a lower limit of quantitation (LLOQ) of 25 pg/mL in rat plasma and 250 pg/mL in lung homogenate. The TPD assay had a LLOQ of 100 pg/mL in rat plasma and 300 pg/mL in lung homogenate. Briefly, TRE and TPD were extracted from plasma and lung homogenate samples by liquid extraction in acetonitrile/water/acetic acid (50/50/0.5, v/v/v). 1-Naphthoxyacetic Acid was used as an internal standard for TRE and hexadecyl TRE (C16TR) was used as an internal standard for octyl TRE (C8TR), decyl TRE (C10TR), dodecyl TRE (C12TR), hexadecyl TRE (C16TR) was used as an internal standard for octyl TRE (C8TR), decyl TRE (C10TR), dodecyl TRE (C12TR), and octyl TRE (C8TR). The TRE and TPD assay in lung homogenate and plasma were performed as follows: nebulized TRE solution and TPD formulations at a volume of 250 μL were administered over a period of approximately 1 min at 15 nmol/kg (6 μg/kg TRE equivalent) to anesthetized male Sprague Dawley rats prepared with an endotracheal tube for ventilation. The right femoral vein was cannulated to facilitate blood collections at specified time points. Terminal lung samples were taken for analysis 6 h after dosing. An Aeroneb® nebulizer and a controller (Aerogen, Galway, Ireland) were used to produce an aerosol of a mass median aerodynamic diameter (MMAD) of around 2.4 μm at a sampling rate of 2 L/min for TRE and TPD concentrations in blood plasma and lung tissue were quantified by HPLC/MS/MS analysis.

PAP measurements

Male Sprague Dawley rates were anesthetized, artificially ventilated, and prepared for measurement of mean pulmonary arterial pressure (mPAP), systemic blood pressure (mSAP), heart rate (HR), and arterial oxygen saturation (SaO2). Specifically, a catheter was surgically placed into the right femoral artery to monitor the arterial pressure throughout the procedure and a tracheotomy was performed to introduce an endotracheal tube to allow the animals to be mechanically ventilated and monitored. Pilot studies were performed to find the optimum volume (3.5–4 mL) for mechanical ventilation and fixed at a volume that produced a 10–15 cm H2O pulmonary inflation pressure for a 300–350 g rat. Following a sternotomy, the pericardium was opened to introduce a 20-gauge catheter into the root of the pulmonary artery for the measurement of pulmonary arterial pressure. Physiologic parameters were measured during normoxia (fraction of inspired oxygen [FIO2] = 0.21, SaO2 ≈ 90 %) and for 2 to 3 h during hypoxia (FIO2 = 0.10, SaO2 ≈ 50 %). Compounds were delivered via the Aeroneb® (Aerogen, Galway, Ireland) nebulizer interposed in a ventilator circuit at an estimated pulmonary dose of 6 μg/kg [13]. A total of 250 μL test article was nebulized over a period of approximately 1 min, starting 10 min after inducing hypoxia.
TPD synthesis was carried out by esterification of TRE in the presence of alcohol to yield alkyl ester derivatives with chain lengths ranging from ethyl (C₂H₅) to octadecyl (C₁₈H₃₇). A schematic of TPD synthesis is shown in Fig. 1. Reaction of TRE with alcohols of varying chain length in the presence of an acid resin catalyst yielded a crude product that was purified using preparatory HPLC to remove reaction impurities. Structural characterization of select TPDs was confirmed using ¹H NMR, ¹³C NMR, and mass spectrometry (see Methods and Table S1). Typical purity by HPLC-UV was not less than 97%.

TPD-LNP formulation

TPD-LNPs were prepared using a proprietary process (Fig. 2a). TPDs with alkyl chain length of 10 carbons or longer have progressively lower water solubility and can be efficiently dosed as a suspension of nanoparticles. We designed stable nanoparticles with a high load of prodrug (30% wt/wt) composed of TPD, the hydrocarbon squalane, the phospholipid DOPC, and the PEGylated lipid Cholesterol-PEG 2000. TPD and squalane, together constituting 80 mol% of the nanoparticle, are believed to form a hydrophobic core, while amphiphilic DOPC and Cholesterol-PEG 2000 occupy LNP surface and stabilize nanoparticles. The process is attractive also as it can be adapted readily for larger scale production.

Further optimization by varying nanoparticle composition and process parameters yielded nanoparticles with an average size of 100 nm. A representative TEM micrograph of TPD-LNPs is shown in Fig. 2b. The size of the solid lipid nanoparticles visible on the TEM micrograph is in agreement with DLS size measurement data shown in Fig. S1.

Delivery to the lung of TPD-LNPs was done as an aqueous aerosol generated by nebulization using an Aeroneb® nebulizer. The mean median aerodynamic diameter (MMAD) of the aerosol droplets was measured using the Marple impactor to be approximately 2.4 μm for all formulations investigated (Fig. S2 and Table S2) [15]. We tested and confirmed that nebulization did not significantly affect the nanoparticle size and did not change the association of TPD to nanoparticles. The particle size of aerosolized LNPs that were re-claimed by condensation using a chilled impinger was changed by not more than 30%.

TPD stability in vitro and ex vivo

To further characterize the TPDs, both spontaneous hydrolysis and enzyme-mediated conversion (de-esterification) of the prodrug to the therapeutically-active TRE were evaluated. Both rates of conversion were determined to be inversely proportional to TPD chain length, i.e. the longer the TPD chain length the slower the TPD to TRE conversion rate. No measurable spontaneous hydrolysis was observed for TPDs with alkyl chain lengths greater than C6TR and no measurable enzyme conversion was observed for C16TR under the conditions tested (Fig. S3a and b).

Ex vivo TPD to TRE conversion was assessed for C8TR – C14TR in rat lung homogenate and for C8TR - C12TR in dog and monkey lung homogenate. In agreement with the observations from the esterase-mediated conversion investigations, TPD to TRE conversion was chain-length-dependent (Fig. 3a), with the initial rate of conversion in rats ranged from 188 %/h for C8TR to 1.1 %/h for C14TR. The conversion rate varied in lung tissue homogenates from different species as shown for C12TR in Fig. 3b. For C8TR – C12TR
the conversion rates decreased in the order dog > rat > monkey (▶ Table 1).

TPD-LNP activity in vitro
An in vitro pGloSensor assay was utilized to monitor cAMP production kinetics in CHO-K1 cells co-transfected with the EP$_2$ receptor and pGloSensor-22 F plasmids over time in the presence of TRE versus TPD-LNPs (▶ Fig. 4). TRE initiated a rapid spike in cAMP production to 16-fold of baseline within the first 20 min of exposure, after which it declined and reached a steady state of ~12-fold cAMP levels after 90 min. In contrast, cells treated with C10TR to C16TR TPD-LNPs exhibited slower-developing cAMP generation to approximately 10-, 7-, 6-, and 4-fold of baseline, respectively, over the course of approximately 180 min (▶ Fig. 4a). The average slopes
of the cAMP productions during the first 180 min were 0.050 (0.003), 0.037 (0.002), 0.021 (0.001), and 0.017 (0.0015) fold/min for C10TR-LNP, C12TR-LNP, C14TR-LNP and C16TR-LNP, respectively. The numbers in parenthesis show the standard error corresponding to a 95 % confidence interval for the slope. In general, longer prodrg chains yielded a slower increase of cAMP production, an indicator of TPD to TRE conversion. This observation was in agreement with those from cell-free and lung tissue homogenate studies. To investigate whether the LNP formulation provided any benefit for the kinetics of TRE release, cAMP production kinetics of C12TR-LNP and its micellar counterpart (C12TR-Micelle) were compared in CHO-K1 cells using the same pGloSensor assay. As shown in Fig. 4b, the C12TR-LNP exhibited a slower-developing effect with a slope of 0.037 compared to C12TR-M, which has a steeper slope of 0.056 (0.003) folds/min and peaked at 120 min vs the LNP’s 180 min, demonstrating an advantage to the LNP vehicle in delaying presentation of the TPD and subsequent TRE to the cell milieu.

PK of TRE and TPD administered by inhalation

To assess whether the chain-length-dependent conversion of TPD to TRE and the sustained release of TRE from TPD-LNPs observed in vitro is also reflected in vivo, plasma levels of TRE were measured over a 6 h period in anesthetized, ventilated rats that were treated with inhaled TRE, TPD-LNP, or micellar TPD (TPD-M) (Fig. 5). A micelle form was included as it provided a dynamic formulation from which TPD would be more readily available for the lung esterases (note that TPD is not soluble in solution and therefore a vehicle is required to allow suspension). TRE generated the highest plasma Cmax (3.4 ng/mL) observed immediately post-dose and was eliminated from the plasma below level of quantitation after 4 h. Ventilated rats treated with inhaled TPD-LNPs of C12TR, C14TR, and C16TR had plasma TRE Cmax values of 0.56, 0.35, and 0.22 ng/mL, respectively (Fig. 5a and Table 2), all were statistically different from TRE Cmax as determined by 1-way ANOVA analysis. A significant linear trend of decreasing Cmax (p < 0.002, Post test for linear trend) was observed for increasing TPD alkyl chain lengths. The tmax was observed at 0.05 h for TRE compared to 0.5 h for both C12TR and C14TR and at 1 h for C16TR (Fig. 5a and Table 2). After inhalation of TPD-Micelle plasma levels of TRE were 3 – 4 times higher (p < 0.05) (2.4, 1.20, and 0.84 ng/mL for C12TR, C14TR, and C12TR, correspondingly) than with TPD-LNP (Fig. 5b and Table 2), consistent with earlier in vitro observations.

In vivo effects

In vivo effects of TRE and TPD-LNPs were compared by measuring reduction of pulmonary arterial pressure (PAP) in a hypoxic pulmonary vasoconstrictive rat model simulating the increased pulmonary pressure characteristic of PAH (Fig. 6). Normoxic baseline PAP in rats ventilated with normal air varied between rats with an average value of 18.4 mmHg and a standard deviation of 2.2 mmHg. Hypoxia induced by a gas mixture with reduced oxygen level (10 %) produced increases in PAP to an average 24.2 mmHg (SD = 2.8 mmHg). After the elevated PAP stabilized, rats were dosed by inhalation. To compare the effect of inhaled test articles, the PAP values were normalized to the hypoxic baseline for each rat. With that scaling, the hypoxic PAP equals 100 %, while the average normoxic baseline PAP is 76 %. Inhaled TRE resulted in an immediate post-dose reduction of PAP to approximately 70 % (slightly below normoxic baseline) that returned to hypoxic baseline levels.

![Table 1 Conversion rates of treprostinil prodrugs (TPDs) with increasing alkyl chain length to treprostinil (TRE) in lung tissue homogenate as a function of time: a in the presence of rat lung tissue homogenate and b Conversion rates of dodecyl TRE (C12TR) to TRE in rat, dog, and monkey lung tissue homogenates. Value at each time point is an average of n = 2 individual samples. Fitted lines are obtained from exponential regression (1 phase association in GraphPad Prism) and shaded areas represent 95 % confidence interval of the slope.](https://www.thieme-connect.com/products/journals/pdfs/1616-5032/1616-5032_2018_68_01_0605-614_0610.pdf)

![Fig. 3 Conversion of treprostinil prodrugs (TPDs) with increasing alkyl chain length to treprostinil (TRE) in lung tissue homogenate as a function of time: a in the presence of rat lung tissue homogenate and b Conversion rates of dodecyl TRE (C12TR) to TRE in rat, dog, and monkey lung tissue homogenates. Value at each time point is an average of n = 2 individual samples. Fitted lines are obtained from exponential regression (1 phase association in GraphPad Prism) and shaded areas represent 95 % confidence interval of the slope.](https://www.thieme-connect.com/products/journals/pdfs/1616-5032/1616-5032_2018_68_01_0605-614_0610.pdf)

<table>
<thead>
<tr>
<th>Rate of TPD Conversion (%)</th>
<th>C8TR</th>
<th>C10TR</th>
<th>C12TR</th>
<th>C14TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>187.6 (18.6)</td>
<td>30.3 (1.35)</td>
<td>5.85 (0.48)</td>
<td>1.13 (0.026)</td>
</tr>
<tr>
<td>Dog</td>
<td>313.4 (25.7)</td>
<td>62.0 (5.35)</td>
<td>9.31 (0.57)</td>
<td>NM</td>
</tr>
<tr>
<td>Monkey</td>
<td>86.5 (7.63)</td>
<td>19.9 (1.48)</td>
<td>2.48 (0.30)</td>
<td>NM</td>
</tr>
</tbody>
</table>

The rate of TPD conversion was determined as the slope at zero time using nonlinear exponential regression (1 phase association) of all data points (0, 0.25, 0.5, 1, 2, and 4 h) measured in duplicates by GraphPad Prism. Standard Error representing 95 % confidence interval is shown in parenthesis. NM – not measured.
after about 160 min. Comparatively, rats treated with inhaled C16TR-LNP at equivalent doses to inhaled TRE produced a similar in magnitude but slower reduction in PAP reaching 70% by 70 min post-dose, which was maintained for the entire duration of the experiment (3 h).

Discussion and Conclusions
This report highlights the initial development of a novel, inhaled, sustained-release formulation of TRE prodrug for treating PAH that provides sustained pulmonary vasodilation. In previous studies a strategy was attempted by which TRE itself was incorporated into a lipid nanoparticle suspension designed to entrap the drug through intermolecular attractions. Treprostinil, an amphiphilic molecule (logP = 4.0) with a terminal carboxyl group that is negatively charged at physiological pH, is chemically compatible for association with lipophilic cationic components known to condense into nanoparticulate structures in the presence of negatively charged molecules [16]. Incorporation of TRE into a lipid nanoparticle comprised of hydrophilic cationic components would hence enable a delayed presentation of TRE as it slowly dissociates from the nanoparticle. A LNP formulation (TRE-LNP) of TRE stemming from this approach was compared against inhaled TRE solution in a pulmonary vasoconstrictive rat model. TRE-LNP demonstrated a somewhat improved pharmacokinetic profile (Fig. S4a) relative to inhaled TRE solution, but it failed to sustain the lowering PAP effect (Fig. S4b).

To develop a slow-release TRE therapy, we reasoned a ‘stronger’ association of the drug with the nanoparticle was required and turned to chemical transformation of TRE into a prodrug. A series of TRE prodrugs was made via the acid-catalyzed esterification of TRE in the presence of linear alcohols of varying chain length. They were then packaged into LNPs (Fig. 1). The prodrug-nanoparticle strategy added to the delay in TRE release. We speculate that TPD first dissociates from the nanoparticle and then subsequently converts to TRE via endogenous esterases as well as to a small extent via spontaneous hydrolysis before causing vasodilation. This concept is supported by the fact that cAMP activation occurred more rapidly in vitro and TRE was more readily available in plasma when C12TR prodrug was placed into more dynamic micelles as compared to LNPs (Fig. 4a and 5b). TPDs with chain lengths of C8 or longer are stable in vitro when incubated at 37 °C for 24 h (Fig. S3a). Thus, enzymatic conversion by esterases is required to present TRE in either in vitro or in vivo experiments. In case of cAMP activation, esterases are likely originating from cell culture. In the
lung tissue, endogenous lung esterases are abundant and can induce quick TPD de-esterification [17, 18]. Of course, to be available for enzymatic conversion, TPDs must first be released from the nanoparticles. One can speculate that this is a diffusion based process and small micelles with greater surface area release TPDs faster than relatively larger LNPs.

The LNP described here serves as a stable carrier of the poorly-soluble TPDs to efficiently disperse the drug in the inhalation solution. The inclusion of the PEGylated lipid Cholesterol-PEG 2000 provided a “stealthy” coating to promote formulation stability in vivo. In addition, a PEGylated shield, along with nanoscale size, contributes to reduced uptake of nanoparticles by macrophages, further providing sustained depot of TPD for release in the lung [19].

The second major factor in achieving sustained presentation of TRE is the nature of the produg molecule. In vitro analyses demonstrated a reduced rate of TPD to TRE enzymatic conversion in solution with increasing TPD chain length (Fig. 3). One may speculate that the increasing chain length makes the molecule increasingly less compatible with the active site of the esterase mediating TPD to TRE conversion. However, TPD solubility with longer chain length may become too low to accurately measure the conversion, particularly for chain length C12 and longer. This observation was confirmed ex vivo when TPDs were assayed in lung tissue homogenate (> Fig. 3a). TPDs were added to a final concentration of only 200 nM, small enough to remain soluble in presence of lung homogenate. As hydrophobic derivatives, TPDs likely associate with various proteins and cell bilayer structures. This in turn may affect the observed TPD conversion. One may argue that this is more relevant to in vivo TPD metabolism when they are delivered to the lung. TPD conversion rate varied greatly between different chain length prodrugs (> Table 1). C14TR was the slowest converting prodrug at about 1 % per hour, and C16TR conversion was not detected. These results likely underestimate actual conversion rate in vivo as the lung homogenate was diluted approximately 5-fold. The homogenization process may also break cells, releasing proteases and other enzymes and thus reduce activity of esterases. Nonetheless, it allowed narrowing of the list of potential TPD candidates that are able to provide 24 h release of TRE to C12TR, C14TR, and C16TR.

The difference in observed conversion rates in different species was noted, with dog being the fastest converting and monkey being the slowest. It is not clear how this will translate into humans considering the report by Berry et al. presenting the activity of three major classes of esterases (carboxylesterase, butyryl-cholinesterase, and paraoxonase) [20]. Substantial species differences in activity of these esterases were observed between the mouse, rat, dog monkey and human, and those differences depended in turn on the substrate and the tissue studied. For example, carboxylesterase was most active in rat plasma and liver, while monkeys showed moderate activity in liver, and dogs had low or no activity in both plasma and liver. Butyryl-cholinesterase, on the other hand, was most active in monkey plasma and moderately active in dog plasma but not in liver. One might speculate that conversion in humans may be similar to monkey (primate), i.e., slower than in dog or rat.

When TPD-LNPs were evaluated in vitro in modified CHO-K1 cells, where cAMP levels were used as a measure of TRE receptor activation, the data similarly showed reduced activation rates with increasing TPD chain length (> Fig. 4a), an observation that was congruent with the lung homogenate conversion data. Here too, TPD must first dissociate from the LNP and get converted to TRE by esterases. Longer chain TPDs likely exhibit both reduced release from LNP and reduced enzymatic conversion rates. The enzymatic conversion is required for the activity as it was shown in a separate study that the prodrugs are inactive towards the prostacyclin receptor [21]. Also, in a study using a non-metabolizable version of the produg (ether linkage replaced the ester linkage in the prod-
rug) the compound demonstrated no pulmonary vasodilation in a rat model [21].

One may speculate whether enzymatic conversion of TPD occurs intra- or extracellularly. TPD is a neutral hydrophobic molecule with low solubility in water but good affinity to lipid bilayers (data not shown). It can exchange between LNP and cell plasma membranes, then further translocate inside the cells. TRE, in turn, is highly soluble in water when deprotonated at neutral pH but due to weak acidity of the carboxylic group can also easily permeate biological membranes, as evident from the TRE PK profile. Thus, both TPD and TRE can likely be present extra- and intracellularly.

Rat PK data further confirms sustained supply of TRE when delivered as TPD-LNP intratracheally to anesthetized ventilated rats (▶ Fig. 5a and ▶ Table 2). Inhaled C12TR, C14TR, and C16TR TPD-LNPs all exhibited greatly reduced C max relative to inhaled TRE solution in ventilated rats. However, AUC0-6 was comparable or higher than with TRE solution, due to sustained TRE plasma levels in rats dosed with TPD-LNPs. Again, we observed a trend with longer chain prodrugs producing lower C max than the shorter chain ones, suggesting slower conversion rate.

Comparison of the PK profile resulting from dosing with C12TR in nanoparticle and in micellar form once more confirms the role of slow release of C12TR from LNPs: TRE plasma C max was lower and reached later after administration of TPD-LNPs compared to TPD-Micelle formulation (▶ Fig. 5b). These observations are in line with the expectation that micelles, which were measured to be 13 nm in size, provide greater surface area and more readily supply TPDs to be converted by esterases to TRE. LNPs are larger in size (100 nm) and could release TPDs slower due to a lower surface area.

Finally, the sustained levels of plasma TRE stemming from TPD-LNP formulations were linked to drug activity in a rat model of hypoxia-induced pulmonary vasoconstriction. In ▶ Fig. 6, the data demonstrate that C16TR-LNP provides a sustained reduction in PAP to normoxic levels. The effect observed for C16TR-LNP was longer lasting within the time-frame of the experiment as compared to TRE or shorter chain prodrugs (data not shown). Here, rats were surgically prepared for intratracheal ventilation and inhalation dosing, and the pulmonary artery was catheterized for PAP measurements. Typically, the duration of experiment in these settings is limited to a reliable PAP recording of up to 3 h or so. The available PK data suggest though that a longer in vivo efficacy study may prove sustained effect lasting long enough to be a viable therapeutic candidate.

We have developed and evaluated an inhaled novel, slow-release, nanoparticle-formulated prodrug of TRE intended for the treatment of PAH that may address pitfalls associated with current clinically used forms of TRE. The most promising candidate formulation, C16TR-LNP has a reduced C max compared to inhaled solution TRE while maintaining a therapeutic extended vasodilatory effect in a rat hypoxia model of pulmonary vasoconstriction. The observed kinetics can be attributed to a delay in TRE presentation which is dictated by TPD dissociation from the nanoparticle and conversion to the active TRE in vivo. These results support that further development of C16TR-LNP as a possible therapy to treat PAH is warranted.

Acknowledgements

The authors would like to thank Paul J. Klecha, Consuelo Garcia, and Dr. Tara E. Henn for assisting with the formulation and physicochemical characterization of TPDs and TPD-LNPs and Dr. Jane Ong for in vitro evaluation of these compounds and formulations. The authors would also like to thank Dr. Keith DiPetrillo for his valuable thoughts and contribution in preparing this manuscript. Funding for this work was provided by Insmed Incorporated (Bridgewater, NJ).

The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE), were fully responsible for all content and editorial decisions, and were involved at all stages of manuscript development.

Conflict of Interest

All authors of this work as well as the work presented in this manuscript were funded by Insmed Incorporated.

References

