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Abstract Objectives In this paper, an artificial intelligence-based algorithm for predicting the
optimal contrastmedium dose for computed tomography (CT) angiography of the aorta is
presented and evaluated in a clinical study. The prediction of the contrast dose reduction is
modelled as a classification problem using the image contrast as the main feature.
Methods This classification is performed by random decision forests (RDF) and k-
nearest-neighbor methods (KNN). For the selection of optimal parameter subsets all
possible combinations of the 22 clinical parameters (age, blood pressure, etc.) are
considered using the classification accuracy and precision of the KNN classifier and RDF
as quality criteria. Subsequently, the results of the evaluation were optimized bymeans
of feature transformation using regression neural networks (RNN). These were used for
a direct classification based on regressed Hounsfield units as well as preprocessing for a
subsequent KNN classification.
Results For feature selection, anRDFmodel achieved thehighest accuracyof 84.42%and
a KNN model achieved the best precision of 86.21%. The most important parameters
include age, height, and hemoglobin. The feature transformation using an RNN consider-
ably exceeded these values with an accuracy of 90.00% and a precision of 97.62% using all
22parameters as input. However, also the feasibilityof theparameter sets in routine clinical
practice has to be considered, because some of the 22 parameters are not measured in
routine clinical practice andadditionalmeasurement timeof 15 to 20minutesper patient is
needed. Using the standard feature set available in clinical routine the best accuracy of
86.67% and precision of 93.18% was achieved by the RNN.
Conclusion We developed a reliable hybrid system that helps radiologists determine
the optimal contrast dose for CT angiography based on patient-specific parameters.
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Introduction

Clinical decision support systems (CDSS) play an increasingly
important role in clinical practice, supporting physicians in
diagnostic and therapeutic decisions.1 A strong focus of CDSS
lies on the application of machine learning methods.2 Such
artificial intelligence (AI)-based algorithms are able to make
connections between the recorded data and the objective of
the given query without explicit representation of expert
knowledge. Recently, the focus of machine learning methods
has shifted toward deep learning encompassing algorithms
like convolutional neural networks,3 (CNN) which contain
convolutional layer to extract features from image data as
being used for instance to detect diabetic retinpathy.4 Another
frequently used deep learning network are autoencoders5 or
variational5 autoencoder, which allow a low-dimension fea-
ture representation that can be used as the input of decision
support systems. However, established approaches such as
support vector machines,6 logistic regression,7 random deci-
sion forests (RDF), and k-nearest-neighbor (KNN) also hold a
great potential as shown when using a decision support
system for early detection of neonatal sepsis based on elec-
tronic medical records.8 A big advantage compared to deep
learning algorithms is the fact that the interpretability of the
datacanbepreservedwhileamore intuitivecomprehensionof
the decision-making process is given.

Objectives

In this work, a CDSSwill be developed to assists radiologists in
optimizing contrast medium (CM) dose for computed tomog-
raphy angiographies (CTA) of the aorta. CTA is an imaging
technique that canbeused to examineall vascular territories of
thehuman body. A high enough CMdose is required to provide
adequate contrast between vessel lumen and the surrounding

area. However, many CMs contain iodine as the enhancing
agent. Iodine has a high absorption rate of X-rays leading to
high Hounsfield Units (HU) values in the computed tomogra-
phy (CT) image data to visualize the targeted vessels. The
contained iodine is known for causing side effects like allergic
reactions,hyperthyroidism,anddeteriorationof renal function
up to contrast-induced nephropathy.9 Therefore, the patient-
specific adjustment of the CM dose offers risk-reducing poten-
tial. The optimal CMdose depends on numerous technical and
physiological parameters. Some approaches propose to use a
lower tube voltage in order to increase the contrast at reduced
CM doses.10,11 Others vary the dose for each patient individu-
ally based on physiological parameters such as body surface
area.12–14 Similar to these approaches, our CDSS is based on
physiological parameters; however, laboratory values and
other clinical parameters are also taken into consideration,
so that in contrast to the aforementioned works 22 relevant
parameters are acquired and used. The result of our system
classifies a patient into nonexcessive image contrast/ CM dose
(class 1)andexcessive image contrast/ CMdose (class 2). Ifclass
2 is predicted for a patient, the system gives the recommenda-
tion to use a reduced CMdose rather than the standard dose as
shown in►Fig. 1. In order to generate the ground truth of the
classification, we implemented a semiautomatic evaluation in
previous works,15 which evaluates the quality of the image
contrast based on mean HU taken in regions of interest (ROI).
This work establishes the subsequent classification. As an
extension of earlier work16 where we focused solely on a
KNN approach, we chose to investigate deep learning-based,
RDFand KNNmodels. Allmethods havebeen successfully used
as predictive models with different clinical parameters.17–20

For example, in this article,21 RDFs were used to predict the
survival of breast cancer patients, whereas in article by Wong
et al22KNNswere used topredict early biochemical recurrence
after prostatectomy. Both methods were trained with a small

Fig. 1 Application of the system before a computed tomography angiography examination. AI, artificial intelligence; GFR, glomerular filtration rate.
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number of parameters (23 and 19). We evaluated both KNN
and RDF models on all possible clinical parameter combina-
tions to generate the optimal parameter sets by feature selec-
tion. In order to quantify the influence of each clinical
parameter on the result of the classification, the impurity-
and the permutation-based feature importance were also
calculated using random forests. In addition to quantitative
analysis, feasibility is assessed differentiating clinical param-
eters into two groups: routinely recorded and nonroutinely
recorded, tooptimizetheuseand theacceptanceofourCDSSin
aclinicalworkspace.Deep learning-basedapproaches areused
for feature transformation. In this case, a regression neural
network (RNN) in the form of a fully connected network was
used to encode certain parameter sets. These networks were
evaluated on the one hand by a direct classification and on the
other hand indirectly as preprocessing of the input features for
the already established KNN classification.

Methods and Experiments

The optimization of the clinical parameter sets was imple-
mented as a feature selection approach through both RDF
and KNN classifiers, respectively. Both methods offer an
interpretation of the input variables, which is primarily
intended to increase the acceptance of the method and the
results themselves in a clinical environment.

Additionally, a feature transformation was implemented
for which a RNNwas trained that performed favorably in our
previous work.23 As input for the feature transformation the
optimized parameter sets as well as the entire set as com-
parison was used.

Clinical Study for Data Acquisition
As result of a clinical study (UKSH Lübeck) we received 77 CT
angiographies encompassing the aorta and the major branch
vessels and the corresponding clinical parameters from the
Department for Radiology and Nuclear Medicine. All included
patients received a CMdose of 100mLwith a concentration of
300mg iodine/mL. In order to increase the quality of the
training data, patients whose images were affected by other
factors, such as suboptimal timing scan, were removed in
advancesoasnot toaffectpossiblecorrelationsbetween image
contrast and clinical parameters. The 22 clinical parameters
are listed in ►Table 1. In addition, radiologists have indicated
which parameters are recorded routinely (rr). As a ground
truth for the dose optimization in an earlier work15 we
implemented an image contrast quality measure similar to
Behrendt et al.24 As shown in ►Fig. 2 under the guidance of
radiological experts three ROIs were defined and placed in
each CTA volume, respectively, in the aorta and the arteria
femoralis communis. The mean (HU) of the ROIs were taken
and categorized among different thresholds to result either in

Table 1 Clinical parameters

Abbreviation Parameter Unit Availability

G Gender – rr

A Age Years rr

H Height cm rr

W Weight kg rr

BMI Body mass index kg/m2 rr

OS Oxygen saturation % rr

BB Beta blocker – rr

HB Hemoglobin g/dL rr

HC Hematocrit % rr

GFR Glomerular filtration rate mL/min rr

C Creatinine μmol/L rr

BPS Blood pressure systolic, rest mm Hg –

BPD Blood pressure diastolic, rest mm Hg –

BPS5 Blood pressure systolic, 5min before CM mm Hg –

BPD5 Blood pressure diastolic, 5min before CM mm Hg –

BPS0 Blood pressure systolic, directly before CM mm Hg –

BPD0 Blood pressure diastolic, directly before CM mm Hg –

P5 Pulse, 5min before CM bpm –

P0 Pulse, directly before CM bpm –

ABI Ankle brachial index – –

WS Waist size cm –

GGT Gamma-glutamyl transferase U/L –

Abbreviations: CM, contrast medium; rr, recorded routinely.
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class 1 (nonexcessive image contrast/CM dose) or class 2
(excessive image contrast/CM dose). Following this assess-
ment, we gained a class distribution of 21 patients in class 1 to
56 patients in class 2.

Ethical Considerations
The acquisition of patient data within the study was con-
ducted with ethical considerations in mind. The study was
approved by the Ethics Committee of the University of
Lübeck under the direction of Prof. Dr. med. Alexander
Katalinic for the file numbers 18-114 and 18-202.

Feature Selection

Random Decision Forests
RDFs25 belong to the supervised learning methods and are
mainly used for classification. RDF implement the concept of
ensemble learning and consist of several binary decision

trees (BDT). During training the input feature vectors are
split at the internal nodes based on the split criterion (e.g.
Shannon entropy26). After training each BDT contains split
thresholds at the internal nodes and a class label at the leaf
nodes based on the ground truth. To classify a new instance it
traverses each BDT, each resulting labels from the leaf nodes
are gathered and a majority vote determines the resulting
class. To result in a meaningful ensemble and to avoid over-
fitting while training randomness is introduced. The most
common method is bagging, which uses different subset of
the training data to train each BDT.

K-Nearest-Neighbor
TheKNNmethod27belongs tothegroupof supervised learning
methods and thus requires a ground truth to classify incoming
instances. KNN is considered a “lazy learner“ because it does
not build a parametric model as a classifier during training.
Instead, instance-based learning is implemented. The basic

Fig. 2 Determine the quality of the image contrast through ROIs. HU, Hounsfield Unit; ROI, region of interest.
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assumption of KNN is that the distance between instances of
the same ground truth in the feature space is smaller than that
ofdifferentground truths. Therefore, to classifyanew instance,
the distance is calculated to all available already classified
instances using a chosen metric. Of these distances, the k
closest are selected and a majority vote determines the class.
Special attention should be paid to the choice of k as a too high
value can lead to vulnerabilities to outliers and a low value
learns to ignore classes with a low number of instances more
easily.

Experiments
With the goal to find the most suitable classifier we choose a
brute force approach for both KNN and RDF in terms of used
clinical input parameters. It should be noted that with the
KNN we left out two parameters as they are categorical. The
number of trained and evaluated classifiers with the number
of clinical parameters m¼22 amounted to

Optimization of the hyperparameters was carried out in
advance using initial experiments. The RDF models have a
depth of d¼8, use the Shannon entropy as the cost function
of a split node and consist of 20 estimators each. For KNN, the
number of neighbors was chosen as k¼5, the metric used is
the Euclidean distance, and the distances were uniformly
weighted. The evaluation was performed using an 11-fold
cross validation.

Feature Importance
One advantage of RDFs is the interpretability of the input
features. In addition, various methods for the evaluation of
the importance of the individual features are available. As an
additional quantitative analysis we use the impurity-based
feature importance and the permutation-based feature
importance.

Impurity-Based Feature Importance
Oneway to determine the feature importance is an impurity-
based approach, which is often referred to as mean decrease
impurity.25 This feature importance can be calculated direct-
ly during training. The importance refers to how successfully
the data have been split into two subsets at a split node based
on a particular feature. Therefore, the impurity measure is
first calculated for the incoming data. The training then
determines the feature and the threshold of the optimal
split. The optimal split provides the impurity measure since
it is equivalent to the split criterion. In our case, we used the
Shannon entropy-based impurity gain. Now the decrease of
the impurity measure is calculated by the difference of the
values before and after the split. A high decrease indicates a
feature that meaningfully splits the data according to the
ground truth. For each feature their resulting values are
summed up over all trees and averaged. The advantage of
this procedure is that no extra calculations are needed to

calculate the mean decrease impurity. The disadvantage,
however, is that features with a high cardinality are often
rated as more important. The reason is that, e.g., continuous
variables are able to provide more thresholds during node
optimization and thus the chance of choosing one of these is
higher.

Permutation-Based Feature Importance
In order to visualize a possible bias of the impurity-based
feature importance, the permutation-based feature impor-
tance is evaluated (Section “Evaluation Measure and
Results”). The technique was introduced as mean decrease
accuracy in this article.25 This method calculates the feature
importance using an already trainedmodel and available test
data. After determining the model loss for the test data a
feature is selected, and its values are permuted among all test
data. Then result of the model is calculated again. The
difference between the new model loss and the former one
provides information about the feature importance of the
specific feature. The greater this difference the more impor-
tant the feature is. This process is repeated per feature for a
chosen number of times and averaged. One advantage of the
permutation-based feature importance is that it interrupts
the relationship between features and their ground truth.
However, as a disadvantage it can decrease the importance of
correlated features. Introducing correlated features can lead
to the model working best when both features are used
equally, rather than one being preferred at split nodes.
Permuting one of the two features will negate this and cause
both features to be rated lower.

Experiments
To compare the importance of each clinical parameter used
for training the KNN and RDF classifiers we gathered the top
100models of the four parameter set configurations: RDF (A:
optimized with respect to the accuracy), RDF (P: optimized
with respect to the precision of class 2), KNN (A) and KNN (P).
Based on those models we counted the number of times a
parameter was used as input. In order to be able to draw a
comparison between the use of all parameters and only the
parameters of the category rr, the best parameter sets were
selected there as well. In addition, the evaluation measures
are shown for the case where all parameters were used as
input as well as all parameters labelled rr.

Feature Transformation

Regression Neural Network
Deep learning methods like autoencoders are often used for
feature transformation or compression and have the disad-
vantage of not considering the problem-specific properties
of the taskduring training.23 To avoid this, RNNs have already
been considered as a task-specific means for feature trans-
formation.28 The basic structure of the neural networks is
formed by successive layers that contain weights that are
applied to their respective input until a task-specific loss
function is calculated in the last layer. In training, back-
propagation through the network updates the weights with
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respect to the gradient of the loss function. In our case, the
regression of the mean HU values of the three ROIs (2) was
implemented. The classification itself was pursued with two
different approaches. In the direct variant, the expert rules
(ground truth) are applied to the regressed HUmeans. For an
indirect classification the features from the last hidden layer
were used as input for an KNN, since experience showed that
intermediate features might contain more meaningful infor-
mation. In contrast to most of the work with a medical–
radiological focus, no CNNs are used in thiswork, as no image
data are available for prediction. Therefore, regarding the
relatively small dimension of the input features for neural
networks, a simple fully connected architecture is used. The
network consists of four fully connected layers with rectifier
linear unit activations in between. The channel numbers are
decreased to five in the last hidden layer. The outputs are the
three mean HUs of the respective ROIs, trained with a mean
squared error loss for 100 epochs.

Experiments
To optimize the feature selection results, the feature trans-
formation using an RNN was applied to selected parameter
combinations. The set of all 22 parameters, the 11 marked as
”rr,” and the parameter sets optimized by the previous
feature selection by the KNN and RDF approach were evalu-
ated. For the actual classification twovariants were tested. In
the direct variant, the regressed HU Means were classified
using the threshold values also used in ground truth, and
indirectly the last hidden layer was used as input of a KNN.

Evaluation Measure and Results

In the following, the results concerning the feature
selection/transformation and the associated optimization
of the parameter sets are described. For the evaluation, the
following values based on the number of true positives (TP),
false positives (FP), false negatives (FN), and true negatives
(TN) per class are considered:

A particular focus is on the precision of class 2 (excessive
image contrast/CM dose) as a recommendation for action is
only given for class 2, and this could lead to an unusable CTA
imagedata and subsequent repetition of the scan in the event
of a misclassification, we aim to achieve the highest possible
precision.

Feature Selection and Feature Importance
As shown in ►Fig. 3, the ankle brachial index (ABI) is one of
the most important parameters for KNN (A) and KNN (P). In

contrast to KNN (P) where hematocrit (HC), hemoglobin
(HB), and oxygen saturation (OS) clearly stood out, it can
be seen that with KNNa high accuracy can be achievedwith a
variety of different parameter sets. Both configurations RDF
(A) and RDF (P) favor the same clinical parameters with ABI,
age (A), height (H), and HB. The overlap between KNN and
RDF is mainly in the occurrence of ABI and HB. The results of
the impurity- and permutation-based feature importance
analysis (►Fig. 4) support these findings. According to the
analysis, H is themost important clinical parameter followed
by HB, ABI, HC, and A. It is noticeable that in the case of
impurity-based feature importance, the RDFs that were
optimized with respect to precision HC, HB, and the gam-
ma-glutamyl transferase (GGT) are clearlymore important in
the decision than those that were evaluated with respect to
accuracy. The same can be seen for permutation-based
feature importance with the input parameter gender.

The best models and their clinical input parameters
according to the evaluation are shown in ►Table 2 for the
RDF and the KNN models according to the configurations
mentioned above. The best accuracy and precision of class 2
byan RDFwas achievedwith the combination of ABI, A, H, BB,
HB, and GGT. This parameter set achieved an accuracy of
84.42% and a precision of 85.48%. Furthermore, this combi-
nation also achieved the highest values in the other evalua-
tion measures. No model trained with only combinations of
the rr parameters could outperform them, with the largest
drop occurring in class 1 precision from 80.00 to 66.67%. In
contrast, the precision of class 2 decreased only slightly with
84.75%. The use of all parameters aswell as the rr parameters
performed worse in comparison with an accuracy of 70.13%
and a maximum precision of class 2 of 76.19%. Two parame-
ter sets achieved the best accuracy of the KNNs with 81.82%.
These included the combination of A, glomerular filtration
rate, andGGT, and the combination of blood pressure, OS, HB,
HC, and creatinine (C). The later also resulted in the highest
precision of class 2, whichwas 86.21%, higher than thebest of
the RDFs. The other evaluation measures also achieved the
highest values for these two parameter sets. As with the
RDFs, no model that had only the parameter choices limited
by rr could exceed these values. Using all parameters and the
limited choice showed lower values, especially the precision
and the F-One score of class 1. It should be noted that in each
parameter set of the different configurations, at least two of
the clinical parameters previously evaluated as most impor-
tant are included. Among them, HB is the most frequently
occurring parameter.

Feature Transformation
The results of the direct classification are shown in the upper
part of ►Table 3. The highest values in all evaluation meas-
ures were obtainedwith the use of all 22 clinical parameters.
Accuracy in this case was 90.00% and class 2 precisionwas as
high as 97.62%. Another very high value was obtained for the
F-One score with 93.18%. Using the 11 parameters belonging
to rr yielded lower values for accuracy (86.67%) and precision
for class 2 (93.18%). All evaluated parameter sets of RDF and
KNN achieved considerably lower values for all evaluation
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Fig. 3 Cumulative occurrence of every clinical parameter in the top 100 model parameter. A, age; ABI, ankle brachial index; BB, beta blocker;
BMI, body mass index; BPD, blood pressure diastolic; BPD0, blood pressure diastolic, directly before contrast medium; BPD5, blood pressure
diastolic, 5min before contrast medium; BPS, blood pressure systolic; BPS0, blood pressure systolic, directly before contrast medium; BPS5,
blood pressure systolic, 5 min before contrast medium; C, creatinine; G, gender; GFR, glomerular filtration rate; GGT, gamma-glutamyl
transferase; H, height; HB, hemoglobin; HC, hematocrit; OS, oxygen saturation; P0, pulse directly before contrast medium; P5, pulse, 5min
before contrast medium; W, weight; WS, waist size.
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measures in comparison. In the lower half of ►Table 3 the
evaluation results of the indirect classificationwith RNN and
KNN are shown. Here, the highest value was achieved by
using the rr parameters for all evaluation measures. Howev-
er, with an accuracy of 86.67% and the precision for class 2 of
89.58%, the results of the direct classification could not be
surpassed. The values when using all parameters as input is
only slightly lower. Again, when using the parameter sets of
RDF and KNN, all evaluation measures decreased noticeably.
Compared with the feature selection methods, the feature
transformation also scored particularly well with class 2
precision. While RDF and KNN are ahead for the extra
selected parameter sets, the feature transformation using
an RNN is ahead for a larger set of clinical parameters as
input. It is noticeable that while 22 parameters in the indirect
variant of the feature transformation lead to a decline

compared with the rr parameter, the direct variant benefits
from the total number of parameters.

Discussion

In this work we aim to establish an AI-based patient-specific
prediction, which classifies an excessive CM dose in order to
recommend a lowered standard dose to be administered to
patients undergoing CTA of the aorta. Trained and evaluated
were RDF and KNN models on all possible clinical parameter
sets. Feature transformationbymeansofRNNswasassessedas
a preprocessing of the input features. Key clinical parameters
included A, ABI, H, HB, HC, and C.While A can influence stroke
volume, H is related to a person’s total blood volume. The ABI
can provide indications of circulatory disorders. Together with
HB and HC, these are all parameters that can have a possible
influence on the distribution of CM in the blood flow. Rather
unexpected is thepositionofC,whichcanalsobeconsidered in
the assessmentof kidney function. The optimal parameter sets
of the RDFs in terms of accuracy include both the ABI and the
GGT. However, these parameters can cause problems in rou-
tine clinical practice. The ABI requiresfinding the pulse, which
can vary in difficulty and can lead to a delay of about 5 to
10minutes. The GGT can cause additional costs if it is ordered
later in addition to thestandard analysis. A good alternative for
the actual applicationwould therefore be the RDFmodel with
A, H, OS, and HB as input parameters. Using the feature
transformation the precision of class 2 and the accuracy
were considerably increased.While the KNNand RDF benefit-
ed from a preselection of clinical parameters, RNN achieved
superior values with many parameters. The best precision of
97.62% was achieved when all 22 parameters were used. The
inclusion of all parameters, however, results in a delay of 15-
20minutes per patient, unsuited for the clinical workflow.
Another point is the loss of interpretability in the feature
transformation and whether this circumstance is sufficiently
compensated by thehigher values of the evaluationmeasures.

Clinical Health Implications
Overall, the study showed that a large proportion of patients
receive an unnecessarily high dose of CM (according to
radiological expertise). In addition, it was shown that
some previously neglected clinical parameters could help
in determining the optimal dose.

Conclusion

In conclusion we developed a system that can assess with a
high degree of accuracy, based on patient-specific clinical
parameters, whether a standard dose of CM is too high for a
given patient. It is limited in the sense that the medical
practitioner has to reduce the standard dose according to
their own assessment, prompted by the recommendation of
the system. For our future work, the application will be
extended to other scan regions besides the aorta to broaden
the spectrum of the application. These include, for example,
CTA images of the lung or the pelvic–leg region. Furthermore,
it is planned through further acquisition activities, to collect

Fig. 4 Impurity- and permutation-based feature importance for each
clinical parameter. A, age; ABI, ankle brachial index; BB, beta blocker;
BMI, body mass index; BPD, blood pressure diastolic; BPD0, blood
pressure diastolic, directly before contrast medium; BPD5, blood
pressure diastolic, 5min before contrast medium; BPS, blood pressure
systolic; BPS0, blood pressure systolic, directly before contrast me-
dium; BPS5, blood pressure systolic, 5 min before contrast medium; C,
creatinine; G, gender; GFR, glomerular filtration rate; GGT, gamma-
glutamyl transferase; H, height; HB, hemoglobin; HC, hematocrit; OS,
oxygen saturation; P0, pulse directly before contrast medium; P5,
pulse, 5min before contrast medium; W, weight; WS, waist size.
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new data necessary to calculate an accurate dose reduction
of the CM based on our machine learning models.
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Direct All 90.00 72.22 97.62 81.25 93.18

rr 86.67 68.75 93.18 73.33 91.11

RDF (A/P) 75.00 45.45 81.63 40.00 84.21

RDF (A/P,rr) 73.33 33.33 77.78 20.00 84.00

KNN (A) 73.33 41.67 81.25 38.46 82.97

KNN (P) 78.33 54.54 83.67 48.00 86.32

KNN (A,rr) 75.00 44.44 80.39 34.78 84.53

KNN (P,rr) 76.67 50.00 83.33 46.15 85.11

Indirect All 85.00 72.72 87.75 64.00 90.53

rr 86.67 75.00 89.58 69.23 91.49

RDF (A/P) 68.33 33.33 79.99 34.48 79.12

RDF (A/P,rr) 68.33 14.29 75.47 09.52 80.81

KNN (A) 71.67 40.00 82.22 41.38 81.31

KNN (P) 73.33 42.86 82.61 42.86 82.661

KNN (A,rr) 78.33 55.55 82.35 43.48 86.60

KNN (P,rr) 71.67 36.36 79.59 32.00 82.11

Abbreviations: KNN, k-nearest-neighbor methods; RDF, random decision forests; rr, recorded routinely.
Note: Bold values mark the best results of the indirect and direct method.
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