Efficient and Scalable Enantioselective Synthesis of a Key Intermediate for Rimegepant: An Oral CGRP Receptor Antagonist

Zhonghua Luo1,2 Guodong Sun1 Guowei Wang2 Xin Zhang2 Yang Zhang2 Ji Zhang1*

1 The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan, People’s Republic of China
2 Process Research & Development, HEC API Yichang Co., Ltd., Yichang, People’s Republic of China

Pharmaceut Fronts 2024;6:e62–e68.

Abstract

Rimegepant is a calcitonin gene-related peptide antagonist used for acute treatment and prevention of migraine. We herein attempt to explore an efficient and practiced method for scale-up, regio- and enantioselective synthesis of (R)-9-hydroxy-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-5-one (1), a key intermediate of rimegepant. In this work, a Ru-catalyzed asymmetric transfer hydrogenation (ATH) reaction was a key step. The optimization of the reaction conditions involved exploring the reaction parameters including catalysts, bases, and solvents. The results suggested that the Ru-catalyzed ATH process using formic acid as the hydrogen donor could be operated under mild conditions at a low catalyst loading (0.5 mol%), affording a high yield (99.8% purity) and gratifying enantioselectivity (99.9% ee) of the target product (1). This work first reported the Ru-catalyzed ATH process in the synthesis of key intermediates of rimegepant. The optimized ATH process was easy to implement and cost-effective, making it particularly suitable for manufacturing scale production.

ISSN 2628-5088.

© 2024. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany
Introduction

Rimegepant is a calcitonin gene-related peptide antagonist developed and launched by Biohaven Pharmaceutical (a wholly owned subsidiary of Pfizer) under license from Bristol-Myers Squibb. It is indicated for acute migraine treatment and prevention and has the potential to treat trigeminal neuralgia and chronic rhinosinusitis, for which studies are still ongoing.\(^1\) A cyclohepta[b]pyridine system of rimegepant has three chiral centers, as shown in Fig. 1, and how to control the region and stereochemistry of the drug during its synthesis is extremely challenging.

(R)-9-Hydroxy-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-5-one (1), as a key intermediate of rimegepant,\(^2\) is synthesized from 7,8-dihydro-5H-cyclohepta[b]pyridin-5,9 (6H)-dione (2) by enantioselective ketone reduction (Fig. 1). Compound 2 has two carbonyl functional groups on the cyclohepta[b]pyridine ring, and the chemical environments of the two carbonyl groups are similar, except that the carbonyl group at position 9 is closer to the nitrogen atom of the pyridine ring, thus, choosing to selectively reduce only one of the ketone groups and at the same time achieving a high degree of chiral purity is extremely challenging.

The reported synthetic methods of compound 1 are listed in Scheme 1. Luo et al constructed the cyclohepta[b]pyridine skeleton (2) from the starting material pyridine-2,3-dicarboxylic acid (3), followed by the stereoselective enzyme reduction of the diketone intermediate to achieve compound 1 and its enantiomer (4), which had to convert the configuration through a Mitsunobu reaction to give the target product.\(^10\) The tedious operation undoubtedly challenged the overall efficiency of the process. Leaby et al obtained the target product (1) via asymmetric hydrogenation of compound 2 applying ES-KRED-119 and Rh((R)-binapine)-(COD)BF\(_4\) as catalysts, respectively.\(^5\) When ES-KRED was used as a reductant, impurities 5 and 6 were generated in parallel, and the target product (1) was isolated at 99.2% ee in only 81% yield, interestingly, when Rh((R)-binapine)(COD)BF\(_4\) was used as a catalyst, the chemo- and enantioselectivity was significantly improved with 99.9% ee and 100% reaction conversion being obtained, but it is well known that the cost of Rh((R)-binapine)(COD)BF\(_4\) is very high due to the extreme rarity of rhodium. Guo et al performed Rh((R)-binapine)(COD)BF\(_4\)-catalyzed asymmetric hydrogenation under 40 to 50 psi, which resulted in low enantioselectivity (only 90% ee, 97% yield), and they had to use camphorsulfonic acid as the resolution reagent and add one more chiral resolution step to improve the chiral purity of the product.\(^5,11\) Given the above, there is an urgent need to explore an efficient and cost-saving method for the enantioselective synthesis of the key intermediate 1.

The asymmetric transfer hydrogenation (ATH) reaction is a potential solution to meet the regio- and stereoselectivity challenge in the synthesis of compound 1 since the reactivity of two carbonyl functional groups adjacent to pyridine would be different under special catalytic reaction conditions. In this study, the process optimization of the reaction,\(^14\)–\(^21\) including the screening of catalysts, solvents, bases, and hydrogen sources, was performed. When CAT05 was used as a catalyst, dichloromethane as a solvent, diisopropylethylamine as a base, and formic acid (HCOOH) as a hydrogen source, the process gave compound 1 with an overall yield of 92.1%, a high purity of more than 99.8%, and an ee value of 99.9%. This robust process can be operated under mild conditions, and the catalyst was replaced by a low-loading ruthenium catalyst (0.5% equiv.), which is much more affordable and readily available, resulting in significant cost advantages.

Results and Discussion

The designed synthesis route of compound 1 in this work is shown in Scheme 2. The commercially available compound 3 was esterified to give compound 8 followed by an ester condensation reaction to generate the cyclohepta[b]pyridine core (9) according to a reported study.\(^11\) Subsequently, the decarboxylation reaction was performed in HCl (aq) providing compound 2, which was subjected to an ATH reaction to give the target compound (1).

The two carbonyl groups of compound 2 have a similar chemical environment, thus it is not easy to achieve a single pure configuration of the target product. The possible by-product is shown in Scheme 3. Then, we attempted to optimize ATH reaction conditions by screening the catalyst, bases, solvent, and hydrogen donors of the reaction.

As shown in Scheme 4, when CAT01 (5% equiv.) was used as a catalyst, the starting material was consumed completely; however, liquid chromatography-tandem mass spectrometry showed no desired compound. The main product was diol side products. We then tried to decrease the amount of catalyst, the reaction temperature, and the amount of

![Fig. 1 Enantioselective synthesis of compound 1.](image-url)
Scheme 1 Reported preparations of compound 1.

Scheme 2 Synthesis route of compound 1 in this work with the Ru-catalyzed ATH reaction as the key step.

Scheme 3 The possible by-products of compound 1.
HCOOH. Fortunately, at room temperature, with CAT01 (0.2% equiv.) and HCOOH (1.09 equiv.), the stereoselectivity of the reaction was improved, obtaining 1 in 93.5% yield and 99.78% ee.

Considering the outsourcing catalyst CAT01 is very expensive, we are dedicated to seeking alternative catalysts that can be synthesized in-house. Therefore, different ligands for ruthenium catalysts were screened. As shown in Table 1, among the catalysts (CAT02, CAT03, CAT04, and CAT05), CAT05 has the highest selectivity (99.44% ee) and conversion rate (93.53% yield) at a lower cost.

Different bases including TEA, diethylamine, diisopropylamine, and N,N-diisopropylethylamine (DIPEA) were screened. As shown in Table 2, among the bases, DIPEA gave the highest enantioselectivity.

Common solvents used in organic reactions including ethyl acetate, toluene, methanol, dichloromethane, ethyl alcohol, isopropyl alcohol, 1,2-dichloroethane, acetone, acetonitrile, and tetrahydrofuran were screened for the ATH reaction. As shown in Table 3, when dichloromethane was used as a solvent, the reaction achieved the best performance with the highest yield (95.36%) and enantioselectivity (99.40%) obtained.

Different hydrogen donors including ammonium formate (HCOONH$_4$), sodium formate (HCOONa), and HCOOH were screened. As shown in Table 4, when HCOONH$_4$ and HCOONa were used as the hydrogen donors, no product was detected in this system, whereas, when HCOOH was used instead, compound 1 was obtained with 85.62% yield and 99.32% ee, thus, HCOOH was chosen as a hydrogen donor for the ATH reaction.

Conclusion

This work explored the synthesis route for compound 1 using pyridine-2,3-dicarboxylic acid (3) as a starting material. This robust process featured efficient, scalable, and stereoselective properties, meanwhile avoiding using dangerous reagents. The route afforded compound 1 in 92.1% yield with high purity (more than 99.8%) and 99.9% ee. The Ru-catalyzed ATH reaction was the key step of the route, and the optimal conditions for the reaction were: CAT05 (0.5%) as a catalyst, DIPEA as a base, dichloromethane as a solvent, and formic acid as a hydrogen donor. Moreover, it is successfully scaled up on the kilogram scale and this process is cost-saving which is suitable for further application.

Experimental Section

Reagents and Materials

Common commercially available materials were purchased from XiLong (Shantou, China), Aladdin (Shanghai, China), or Kelong (Chengdu, China). CAT01 was purchased from Sino Compound Catalysts Co., Ltd. (Suzhou, China). CAT02, CAT03, CAT04, and CAT05 were synthesized in-house. Unless otherwise stated, all the chemicals and reagents were commercially available and used without any depuration. Nuclear magnetic resonance (NMR) spectra were collected on a Bruker Avance 400 spectrometer in chloroform-d (CDCl$_3$). Chemical shifts were reported in parts per million (ppm). The reference peak was defined as 7.26 ppm in the 1H spectrum and 77.0 ppm in 13C spectrum. Coupling constants are represented by Hz.
resolution mass spectrometry was detected by a Fourier-transform ion cyclotron resonance mass spectrometer. Purity and ee values were detected by high-performance liquid chromatography using an Agilent Zorbax Eclipse XBridge C18 (250 mm × 4.6 mm; 5 μm) and an IC column.

Dimethyl Pyridine-2,3-dicarboxylate (8)

To a 2 L round bottom flask was added compound 3 (50.5 g, 0.30 mol) and methanol (600 mL), followed by dropwise addition of concentrated sulfuric acid (45 mL) for 25 minutes under a nitrogen atmosphere. After stirring for an additional 10 minutes at room temperature, the mixture was heated to 75°C, stirred for 22.5 hours, and then cooled to room temperature. After the removal of methanol by distillation under vacuum at 41°C, the mixture was stirred at 0°C for 5 minutes followed by the addition of ice water and saturated NaHCO₃ solution (650 mL) dropwise. Then, a large amount of white solid was precipitated. Ethyl acetate (300 mL) was added followed by the addition of saturated Na₂CO₃ solution (80 mL) to adjust pH = 8 to 9. The reaction mixture was poured into a separatory funnel and separated. The aqueous layer was extracted with EA (100 mL × 6). The organic layers were concentrated to afford an off-white solid (51.28 g), which was washed with n-hexane (150 mL) at room temperature for 2 hours and stirred at 0°C for 30 minutes, the solid was filtered and the filter cake was washed with 30 mL of n-hexane, dried in a vacuum at 38°C to give 9 (48.34 g, 81.97 yield%) as a white powder, which was used directly for the next reaction.

Dimethyl-5,9-dihydroxy-7H-cyclohepta[b]pyridine-6,8-dicarboxylate (9)

To a 1 L round bottom flask was added compound 9 (25.14 g, 128.8 mmol) and toluene (190 mL), followed by the addition of dimethyl glutarate (31.54 g, 196.9 mmol). A solution of potassium tert-butoxide (36.51 g, 325.37 mmol) in tetrahydrofuran (320 mL) was added to the reaction mixture dropwise at 0°C for 40 minutes. The mixture was stirred at room temperature for several minutes and allowed to stir for 2 hours at 58°C under a nitrogen atmosphere. After removal of the solvent by distillation under vacuum at 40°C, the mixture was added with ice water (400 mL) and ethyl acetate (250 mL), followed by the addition of glacial acetic acid dropwise to adjust pH = 7. The solution was poured into a separatory funnel and separated. The aqueous layer was extracted with ethyl acetate (200 mL, 100 mL × 8). The merged organic layers were washed with saturated NaCl solution (200 mL) and concentrated by distillation under vacuum at 40°C to afford a light-yellow solid, which was dispersed in n-hexane (100 mL), stirred at 0°C for 1 hour, and then filtered.

Table 2 Base screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Yield (%)</th>
<th>ee (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEA</td>
<td>93.53</td>
<td>99.44</td>
</tr>
<tr>
<td>2</td>
<td>Diethylamine</td>
<td>/</td>
<td>93.28</td>
</tr>
<tr>
<td>3</td>
<td>Diisopropylamine</td>
<td>/</td>
<td>99.26</td>
</tr>
<tr>
<td>4</td>
<td>DIPEA</td>
<td>89.2</td>
<td>99.52</td>
</tr>
</tbody>
</table>

Abbreviations: DIPEA, N,N-diisopropylethylamine; TEA, triethylamine. *Catalyst CAT05 (0.5%) and HCOOH (1.1 equiv.) were charged with the reaction vessel, and the reaction mixture was stirred at room temperature for 28.5 hours. **It was detected by high-performance liquid chromatography employing an IC column.

Table 3 Solvent screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>ee (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethyl acetate</td>
<td>78.6</td>
<td>98.86</td>
</tr>
<tr>
<td>2</td>
<td>Toluene</td>
<td>90.36</td>
<td>98.96</td>
</tr>
<tr>
<td>3</td>
<td>Methanol</td>
<td>50.32</td>
<td>99.28</td>
</tr>
<tr>
<td>4</td>
<td>Dichloromethane</td>
<td>95.36</td>
<td>99.40</td>
</tr>
<tr>
<td>5</td>
<td>Ethyl alcohol</td>
<td>88.85</td>
<td>99.42</td>
</tr>
<tr>
<td>6</td>
<td>Isopropyl alcohol</td>
<td>89.03</td>
<td>99.32</td>
</tr>
<tr>
<td>7</td>
<td>1,2-Dichloroethane</td>
<td>91.62</td>
<td>99.48</td>
</tr>
<tr>
<td>8</td>
<td>Acetone</td>
<td>63.44</td>
<td>98.54</td>
</tr>
<tr>
<td>9</td>
<td>Acetonitrile</td>
<td>89.19</td>
<td>99.18</td>
</tr>
<tr>
<td>10</td>
<td>Tetrahydrofuran</td>
<td>87.99</td>
<td>98.78</td>
</tr>
</tbody>
</table>

*a Reaction conditions: compound 2 (1 g), CAT05 (1%), HCOOH (1.1 equiv.), room temperature. **It was detected by high-performance liquid chromatography employing an IC column.

filter cake was washed with n-hexane (30 mL) and dried in a vacuum at 38°C to give 9 (25.98 g, 69.25% yield%) as a light-yellow powder.

7,8-Dihydro-5H-cyclohepta[b]pyridine-5,9(6H)-dione (2)
To a 1 L round bottom flask was added compound 9 (64.62 g, 0.22 mol), followed by the addition of 6 N HCl (320 mL, 1.87 mol). The reaction mixture was allowed to warm to 78°C and heat for 19.5 hours. After cooling to 0°C, saturated Na2CO3 solution (500 mL) was added carefully to adjust pH = 7 to precipitate solids. The mixture was poured into a separatory funnel, and extracted with dichloromethane (300 mL, 100 mL × 3). The dichloromethane layers were combined and then concentrated to dryness under reduced pressure to give the crude product. The crude product was added ethyl acetate (60 mL). The reaction liquid was warmed to 50°C and stirred till dissolved completely. Upon the addition of 150 mL of n-hexane, the reaction liquid was allowed to stir at 75°C for 0.5 hours. After standing layered, the reaction liquid was stirred at room temperature for 4 hours until a large amount of white solid precipitated. After stirring at 0°C for 1 hour, the slurry was filtered and the filter cake was washed with n-hexane (100 mL) and dried under reduced pressure at 38°C to afford 2 (34.81 g, 89.56 yield%) as an off-white powder.

Table 4 Hydrogen donor screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Hydrogen proton donor</th>
<th>Yield (%)d</th>
<th>ee (%)e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HCOONH4</td>
<td>ND</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>HCOONa</td>
<td>ND</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>HCOOH</td>
<td>89.62%</td>
<td>99.32%</td>
</tr>
</tbody>
</table>

Abbreviations: HCOONH4, ammonium formate; HCOONa, sodium formate; HCOOH, formic acid; ND, not detected.

a Compound 2 (0.503 g), CAT05 (0.5% equiv.), HCOONH4 (1.1 equiv.), room temperature, 23 hours.

b Compound 2 (0.501 g), CAT05 (1.0% equiv.), HCOONa (1.1 equiv.), room temperature, 17 hours.

Detected by thin-layer chromatography.

References

Luo GL. Piperidine derivatives as CGRP receptor antagonists. WO Patent 2009126530A2. October, 2019

