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Introduction

Dysregulated type 2 diabetes is a major risk factor for
coronary heart disease, and strict glycaemic control is
essential for preventing adverse events. Pathophysiological
links explaining complications are not understood, but pla-
telets are thought to be important.1,2 Thus, knowledge about
interrelations between diabetic platelets and glycosylated
haemoglobin (HbA1c) is scarce. The disease is accompanied
by platelet alterations; theyenhance during hyperglycaemia;
and it is hypothesised that they reverse after HbA1c correc-
tion.3,4Mean platelet volume, a computer-generated average
of platelet size, is increased and associates with glycaemic
control.5 Furthermore, diabetic platelets are characterised by
enhanced sensitivity to agonists, exaggerated aggregation,

increased surface thrombin generation,6,7 and an impaired
sensitivity to inhibitory agents.8

In recent times, a renewed interest in platelet diversity
has emerged, and we have comprehensively investigated
platelets divided according to density.9–11 Platelet density
covers the span 1.040 to 1.090 kg/L12,13 and high-density
fractions encompass more mitochondria, glycogen, and
granules.12–14 As judged from membrane-exposed activity
markers, high- and low-density platelets circulate more
activated.15,16 It is further agreed that platelets exhibit
different behaviour in response to agonist stimulation, as
some populations activate their fibrinogen receptors while
other platelets externalise granules. Finally, when activated,
specific sub-fractions exhibit procoagulant properties by
exposing phosphatidylserine and releasing vesicles.17,18

Keywords

► annexin V
► αIIbβ3 activity
► type 2 diabetes
► HbA1c
► lysosomal-associated

membrane protein 1
► mitochondria
► platelets
► platelet reactivity

Abstract In type 2 diabetes, platelets are likely affected by impaired long-term glycaemic
control, but such pathophysiological links are poorly understood. This study thus
compares platelet reactivity (i.e. agonist-evoked platelet reactions) in vitro with
glycosylated haemoglobin (HbA1c), a measure commonly used for monitoring long-
term metabolic control of type 2 diabetes. Elders with type 2 diabetes (n¼35) were
divided according to HbA1c into groups (HbA1c—low and high) consisting of 17 and 18
subjects, respectively. For estimating mitochondria disintegration, a flow cytometer
determined mitochondrial transmembrane potentials after whole blood agonist
stimulation. The activating agents used were α-thrombin (10 μM) and collagen (0.15 μ-
g/mL). The same apparatus analysed the fibrinogen receptor activity, lysosomal
exocytosis (surface lysosomal-associated membrane protein 1), and platelet procoa-
gulant characteristics (membrane-attached annexin V) after stimulation. In type 2
diabetes, after in vitro agonist stimulation, platelet mitochondria injury was higher in
the HbA1c-high group. The fibrinogen receptor, lysosomal secretion, and the creation
of procoagulant platelets proved to be uninfluenced by HbA1c.
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The flow cytometry technique used in this study divides
platelets and platelet-derived corpuscles according to size
(i.e. normal-sized, small platelets, and vesicles). Little is
known about the function of small platelets,11,17 whereas
from a clinical point of view, platelet-derived vesicles have
received more attention.19,20 Most vesicles are created at
thrombopoiesis,21 but they also originate from membrane
blebs of activated normal-sized platelets. Vesicles are postu-
lated to be important for several clinical conditions such as
diabetes.22 Thus, dysregulated glucose homeostasis is a
potent stimulator of vesicles.23 Vesicles further augment
atherosclerosis20 and predict adverse cardiac events of
patients with type 2 diabetes.24 Some scientists hypothesise
that vesicles in conjunction with enhanced thromboxane A2

associate with HbA1c.22,25

Platelets show metabolic flexibility by being capable of
switching between aerobic glycolysis26 and an active energy
metabolism, mediated by mitochondria, the hub of cellular
oxidative homeostasis.17,27 Mitochondria constitute impor-
tant regulators of platelet function,27 but when platelets
activate, they do not influence adhesion and thrombi
growth.23,28 Information about energy utilisation of diabetic
platelets is sparse, but the condition involves dysfunctional
mitochondria.3 It is further theorised that mitochondria of
diabetic platelets enhance ATP production, elevate respira-
tion, and reduce their transmembrane potentials as an
adaptation to durable high exposure to energy substrates
(i.e. a poor metabolic control).29–31 With this background in
mind, the present experimental protocol is designed to
examine relations between mitochondria integrity after in
vitro agonist stimulation and enduring glycaemic control
(HbA1c) of type 2 diabetes.

Patients and Methods

Subjects and Blood Sampling
After authorisation by the local ethics committee (Regionala
Etikprövningsnämnden i Linköping, Medicinska Fakultetens
Kansli, Linköpings Universitet, SE-581 83 Linköping
[registration number 2018/54-31]), patients with type 2
diabetes (n¼35) were enrolled. Demographic and anthro-
pometric details are given in ►Table 1. The participants
signed informed consent, and exclusion criteria were not
applied. Participants had regular appointments with their
family physicians and were enrolled when laboratory staff
was available. For flow cytometry platelet reactivity studies,
whole blood (9mL)was drawn from the antecubital vein into
sodium citrate (3.2%) test tubes. Agonists were α-thrombin
(10μM) and collagen (0.15μg/mL). For platelet density sep-
arations (see later), an additional citrate anticoagulated
whole blood specimen (9mL) was transferred to a blocking
mixture composed of equivalent quantities of the following
stock solutions:

A. 1mg/L prostaglandin E1 dissolved in 95% (w/v) ethanol.
B. 0.13M Na2 EDTA and 0.15M Na2 citrate (pH 7.4 at 25 °C).
C. 2.7mM theophylline dissolved in 150mM TRIS chloride

buffer (pH 7.4 at 25 °C).

Subsequently, the mixture was used for the separation of
platelets according to density.9,10 EDTA-anticoagulatedwhole
blood (3mL)was also collected for routine analysis (►Table 1).
The flow cytometry procedures were started approximately
120minutes after venipuncture. The unpaired Student t-test
and the chi-square tests were used as statistics where
appropriate.

Platelet Density Fractionation
As platelet density fluctuates between 1.040 and 1.090
kg/L,12,13 linear polyvinylpyrrolidone-coated silica (Percoll)
gradients covering that span were employed for separating
platelets according to density.9 To circumvent in vitro
activation in the laboratory, the gradients enclosed EDTA,
theophylline, and prostaglandin E1. After centrifugation, the
gradientswere split into subpopulations (n¼16)9with high-
density corpuscles situated in low digit subpopulations and
vice versa.

Table 1 Clinical and demographic characteristics of patients
with type 2 diabetes (n¼ 35)

HbA1c
Low (mmol/L)
(n¼17)

HbA1c
High (mmol/L)
(n¼18)

Male/female (n) 8/9 7/11

Age (years) 70�12 (SD) 73� 10 (SD)

Body weight (kg) 80�13 (SD) 85� 12 (SD)

Duration of
diabetes (years)

9�4 (SD) 13� 7 (SD)

Previous coronary
disease (n)

3 1

Previous cerebral
disease (n)

3 1

Insulin (%) 8a 67a

Metformin (%) 85a 53a

Other oral
antidiabetics (%)

21a 50a

β-Blockers (%) 36 33

Diuretics (%) 36 47

Ca2þ-blockers (%) 33 36

Aspirin (%) 20b 38b

Clopidogrel (%) 8 0

ACE inhibitors (%) 38 44

A2 inhibitors 28b 13b

Statins (%) 92b 67b

Haemoglobin A1c
(mmol/L)

49�6 (SD) 67� 10 (SD)

Creatinine (μmol/L) 77�26 (SD) 85� 27 (SD)

Abbreviations: ACE, angiotensin-converting enzyme; SD, standard
deviation.
Note: The Student t-test (unpaired) and chi-square test were used where
applicable.
ap< 0.01.
bp< 0.05.
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Flow Cytometry
The Gallios Flow Cytometer (Beckman Coulter, Brea, Califor-
nia, United States) equipped with three lasers (405, 488,
638nm) was used. The device has a multi-colour design. The
following parameters were determined.

Mitochondrial transmembrane potentials¼ retention
of 1,1′,3,3,3′,3′-hexamethyl-indodicarbo-cyanine iodide
(DiIC1(5)).
Membranephosphatidylserine¼ surface-boundannexinV.
αIIbβ3 (Fibrinogen) receptor activity¼ PAC-1.
Lysosomal discharge¼ surface-attached LAMP-1.
Corpuscle size¼normal-sized platelets, small platelets,
and vesicles.

A published flow cytometry protocol was used without
major changes11,17 and ►Table 2 lists probes and antibodies
in detail. Platelets were identified by GPIIb receptor fluores-
cence and forward scatter (size). The gating of the apparatus
has been explained extensively elsewhere.17 Samples were
added to probes and antibodies (►Table 2) as published
previously.11,17 The percentage of positive corpuscles was
used as an experimental parameter, and we did not analyse
mean fluorescence intensities. After 10minutes, the samples
were diluted with HEPES-Ca2þ which terminates the reac-
tions. Flow cytometry particle acquisition finished either
after 2minutes or after counting more than 5,000 particles.
Thus, the quantity of evaluated corpuscles fluctuated corre-
sponding to subfraction counts.

Results

It is evident from ►Table 1 that the study groups differed
significantly with respect to current medications in that
HbA1chigh individuals more often had insulins (p<0.01) and
‘other’ oral antidiabetic drugs (p<0.01). In contrast, they less
frequently used metformin (p<0.01). It is also apparent that

the HbA1chigh group hadmore aspirin prescriptions (p<0.05)
but used less statins and A2 receptor inhibitors (both;
p<0.05). ►Table 3 reveals that mitochondria injury of nor-
mal-sized platelets after stimulation (α-thrombin [10 µM;
p<0.01] and collagen [0.15 µg/mL; p<0.05]) as judged from
DiIC1(5) was higher in the HbA1chigh group. Furthermore,
basal surface PAC-1 in vitro (i.e. platelet activity) and HbA1c
related inversely (p<0.05). However, agonist-evoked PAC-1,
lysosomal release (LAMP-1), and procoagulant platelet
creation (annexin V) failed to associate with HbA1c
(►Table 3). ►Fig. 1 reveals that HbA1c did not affect mito-
chondria integrity of density-separated normal-sized plate-
lets. In contrast, ►Figs. 2 and 3 demonstrate that denser and
lighter circulating small-sized platelets and vesicles of HbA1-
chigh subjects displayed more injured mitochondria (for both
corpuscles: fraction nos. 1–6, density span 1.090–1.071kg/L
[p<0.05], fraction no. 7, density span 1.068kg/L [small
platelets, p<0.05] and fraction nos. 13–15, density span
1.049–1.043kg/L; small platelets [p<0.05]; vesicles
[p<0.01]) and fraction no. 16 [density span 1.040kg/L; small
platelets [p<0.01] and vesicles [p<0.05]). ►Fig. 4 summa-
rises basal surface PAC-1 for each normal-sized density sub-
population (n¼16)—the proportions (%) of platelets
expressing surface PAC-1 (mean� SD), i.e. activatedfibrinogen
receptors. The HbA1chigh group displayed lower surface PAC-1
of circulating dense platelets (fractions nos. 1–4, density span
1.090–1.078kg/L; p<0.01). The population nos. 8, 14 (density
span 1.065 and 1.046kg/L, respectively) performed similarly
(p<0.05).

Discussion

The main finding of this study investigating relationships
between type 2 diabetic platelets and long-term glycaemic
control can be summarised as follows: (1) agonist-evoked
platelet mitochondria injury was increased in the HbA1chigh

Table 2 The flow cytometry technique (i.e. the determinations, antibodies, probes, final concentrations and manufacturers)

Platelet identification
Detection of the platelet receptor αIIb

Antibodya

CD41; PE
0.69 μg/mL

Lysosomal exocytosis
Analysis of membrane-bound LAMP-1

Antibodya

LAMP�1
(CD107a, clone: H4A39); PE 0.5 μg/mL

Fibrinogen αIIbβ3 receptor activity
Analysis of membrane-bound PAC-1

Probeb

PAC-1; FITC
0.56 μg/mL

Determination of surface-attached annexin V
Membrane-exposed phosphatidylserine

Probeb

Annexin V-V450; PE
2.67 ng/mL

Mitochondria membrane potential
Determination of DiIC1(5) retention

Probec

1,1′,3,3,3′,3′-hexamethyl-indodicarbo-cyanine iodide
30 nM

Abbreviations: DiIC1(5), 1,1′,3,3,3′,3′-hexamethyl-indodicarbo-cyanine (relates inversely with mitochondria damage); FITC, fluorescein isothiocy-
anate; LAMP-1, lysosomal associated membrane protein; PE, phycoerythrin.
aBeckman Coulter (Brea, California, United States).
bBecton, Dickinson and Company (Franklin Lakes, New Jersey, United States).
cMolecular Probes (Eugene, Oregon, United States).
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group; (2) after agonist-induction in vitro, the αIIbβ3 receptor
(PAC-1), lysosomal release (surface LAMP-1), or procoagulant
platelet counts (annexin V) were not affected by HbA1c; (3)
mitochondria damage of both lighter and denser circulating
small platelets and vesicles, unstimulated in vitro, was higher
in the HbA1chigh cohort.

As compared to previouswork investigating resting type 2
diabetic platelets with respect to energy utilisation,29 this
work broadens the observations in showing that elevated
HbA1c enhancesmitochondria injurywhenplatelets activate
as well (►Table 3). It could be part of other activation
pathways not investigated by us, such as an augmented
thromboxane A2 synthesis.22,27 Further research is necessary
to elucidate if the current mode for platelets to activate (i.e.
augmented mitochondria injury without increased fibrino-
gen receptor activation, lysosomal release, and procoagulant
platelet generation) impacts adverse events in conjunction
with dysregulated diabetes.

Mitochondria integrity in circulating small platelets and
vesicles displayed a substantial heterogeneity in that elevat-
ed HbA1c (HbA1chigh) affected only some sub-populations
(►Figs. 3, 4). For both corpuscles, mitochondria injury of
high- (fraction nos. 1–7, density span 1.090–1.069 kg/L) and
low-density (fraction nos. 13–16, density span 1.051–1.040
kg/L) subpopulations were lower in the HbA1chigh group. In
contrast, mitochondria damage of intermediate dense, small

platelets, and vesicles (fraction nos. 8–12, density span
1.069–1.051 kg/L) failed to associate with HbA1c.

In this study, mitochondria injury (DiIC1(5)) of normal-
sized platelets did not associatewith the glycaemic control as
judged from erythrocyte HbA1c (►Fig. 1). It disagrees with
earlier work.29 It could be that mean fluorescence intensity
determinations yield more favourable results. It is open to
speculation whether the present technique for estimating
mitochondria damage is not sensitive enough for detecting
minor differences within normal-sized platelet density sub-
populations. Furthermore, some small platelet and vesicle
sub-populations of the HbA1chigh group displayed more
disintegrated mitochondria (►Figs. 2, 3). Previous work did
not separate platelets according to size.26,28 In our setting,
when evaluating normal-sized platelets, small platelets and
vesicles were removed. This offers a tenable explanation for
discrepancies in findings.

It is an unproven, but widespread, understanding that
dysregulated type 2 diabetes adversely affects the reactivity
of circulating platelets. This study fails to verify such clear-cut
conclusions. It is, however, evident from ►Table 3 that αIIbβ3
receptor activity (PAC-1) of circulating whole blood platelets,
unprovoked in vitro, decreases with a deranged glycaemic
metabolism. Basal PAC-1 of some normal-sized subpopula-
tions (fraction nos. 1–4: density span 1.090–1.077kg/L and
fraction nos. 8, 14: densities 1.065kg/L and 1.046kg/L,

Table 3 Associations of basal activity (without in vitro stimulation) of normal-sized platelets together with whole blood reactivity
after agonist stimulation and long-term metabolic control of individuals with type 2 diabetes (n¼35) as judged from HbA1c

Normal-sized platelets HbA1c
Low (mmol/L)

HbA1c
High (mmol/L)

p-Value

Proportions of DiIC1(5)-positive normal-sized platelets (%)

No agonist 98� 1 98�1 NS

α-Thrombin (10 μM) 98� 2 97�2 <0.01

Collagen (0.15 μg/mL) 95� 9 88�8 <0.05

Proportions of PAC-1-positive normal-sized platelets (%)

No agonist 4� 3 2�1 <0.05

α-Thrombin (10 μM) 52� 37 38�26 NS

Collagen (0.15 μg/mL) 55� 30 52�26 NS

Proportions of LAMP-1-positive normal-sized platelets (%)

No agonist 5� 5 2�3 NS

α-Thrombin (10 μM) 56� 26 54�12 NS

Collagen (0.15 μg/mL) 56� 39 59�18 NS

Proportions of annexin V positive normal-sized platelets (%)

No agonist 2� 1 2�2 NS

α-Thrombin (10 μM) 2� 1 3�3 NS

Collagen (0.15 µg/mL) 4� 5 5�4 NS

Abbreviations: DiIC1(5), mitochondrial transmembrane potentials, i.e. retention of 1,1′,3,3,3′,3′-hexamethyl-indodicarbo-cyanine iodide; HbA1-
chigh, subjects (n¼ 18), mean erythrocyte HbA1c level 67� 10 (SD) (mmol/L); HbA1clow, subjects (n¼ 17), mean erythrocyte HbA1c level 49� 6 (SD)
(mmol/L); HbA1c, haemoglobin A1c (mmol/L); LAMP-1, lysosomal-associated membrane protein 1; PAC-1, fibrinogen receptor (αIIbβ3) activity; SD,
standard deviation.
Notes: α-Thrombin (10 µM) and collagen (0.15 µg/mL) were employed as agonists. Mitochondria transmembrane potentials (DiIC1(5)) as measures
of organelle integrity were determined, with ‘lower’DiIC1(5) suggestive of ‘more’disintegratedmitochondria. Surface PAC-1, LAMP-1, and annexin V
assessed fibrinogen receptor (αIIbβ3) activity, lysosomal release, and procoagulant platelet production, respectively.
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Fig. 1 Associations between platelet mitochondria integrity as estimated from DiIC1(5) of normal-sized platelets and glycaemic control
(erythrocyte HbA1c) of patients with type 2 diabetes (n¼ 35). ‘Lower’ DiIC1(5) indicates ‘more’ disintegrated mitochondria. For each
participant, normal-sized platelets were split into density sub-fractions (n¼ 16) and divided into groups (n¼ 2) depending on HbA1c (high and low).
The dotted line shows the HbA1c low group, and the vertical marks display standard deviations. No significant differences between
experimental groups were detected.

Fig. 2 Associations between mitochondria transmembrane potentials (DiIC1(5)) of density-separated small platelet subpopulations (n¼ 16)
and long-lasting glycaemic control of type 2 diabetes as judged from HbA1c. A ‘lower’ DiIC1(5) denotes ‘more’ disintegrated mitochondria.
Subjects (n¼ 35) were divided, according to HbA1c, into groups (n¼ 2) comprising 17 and 18 (HbA1chigh and low) individuals. The
dotted line denotes the HbA1c low cohort. For each small-sized density subpopulation (n¼ 16), the groups (HbA1clow and high) were compared
with respect to mitochondria integrity (DiIC1(5)). The vertical lines indicate standard deviations and colours imply significance
(black: not significant; red: p< 0.01; yellow: p< 0.05).
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Fig. 3 Reviews mitochondria integrity (DiIC1(5)) of density-separated vesicle subpopulations and displays associations with the long-term
metabolic control of type 2 diabetes (erythrocyte HbA1c). In this setting, a ‘higher’ DiIC1(5) indicates ‘more’ retained mitochondria.
Participants (n¼ 35) were split depending on HbA1c into groups (n¼ 2) consisting of 17 (HbA1c low) and 18 (HbA1c high) subjects,
respectively. The dotted line summarises the HbA1c low group (mean� SD; vertical lines) with the colours indicating significance between
HbA1c low and high (black: not significant; red: p< 0.01; yellow: p< 0.05).

Fig. 4 Relationships between proportions (%) of density-separated normal-sized platelets, demonstrating activated αIIbβ3 receptors (PAC-1) and
long-term metabolic control of type 2 diabetes as ascertained by HbA1c. For each subject (n¼ 35), normal-sized platelets were split
according to density into sub-populations (n¼ 16) and the sub-fractions were divided into groups depending on the metabolic control (HbA1c

low [n¼ 17], HbA1c high [n¼ 18]). For the two groups, the figure gives the percentages of PAC-1 expressing circulating normal-sized
platelets (mean� SD [vertical bars]) not stimulated in vitro (black: not significant; red: p< 0.01); yellow: p< 0.05).
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respectively) demonstrates close inverse relationships with
HbA1c (►Fig. 4). It makes us theorise that αIIbβ3 receptors of
well-defined normal-sized density subpopulations react
depending on the glycaemic control (►Fig. 4). Platelet lyso-
somal release and surface annexin V failed to display such
phenomena (data not shown).

Limitations

To enhance statistical power, we increased the type 2 diabe-
tes groupwith a subsequent exclusion of healthy controls. As
expected, HbA1chigh individuals had more insulin prescrip-
tions (►Table 1). The patients further represent a mixed
group with respect to metformin (►Table 1), a remedy that
may affect platelet mitochondria.30,32 In addition, HbA1chigh
subjects more often had aspirin and, in this setting, it has the
potential to diminish differences between study groups.
Venipuncture was performed on a single occasion only,
making it impossible to secure individual reproducibility
of platelet activity measures by repeated sampling.

Conclusion

In type 2 diabetes, mitochondria injury after in vitro platelet
activation was increased in the HbA1chigh group. No such
associations were found for whole blood agonist-evoked ag-
gregation, lysosomal discharge, and procoagulant reactions.

Plain Language Summary

What did we know?

• Little is known about the influence of long-lasting
hyperglycaemia upon platelets in type 2 diabetes.

What did we discover?

•Mitochondria injury after agonist stimulation associates
with impaired metabolic control. Other platelet activa-
tion pathways failed to show such relationships.

What is the impact?

• In type 2 diabetes, the communicated route for platelets
to activate could affect thrombotic events associated
with increased HbA1c.
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