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Introduction

Since its discovery, cancerhas been considered to be one of the
most lethal diseases with a high mortality rate and a heavy
social burden. Unfortunately, its occurrence is rising dramati-
cally across the globe, preventing people from reaching a
higher life expectancy.1 It brings patients not only physical
andmental pain but also a burden on their lives. Chemothera-
py, especially combination chemotherapy, is the most preva-
lent strategy in cancer treatment,2whichuses smallmolecules
to eliminate tumors. However, these small-molecule drugs
would cause some adverse reactions under normal circum-
stances, leading to a decrease in patient compliance.

With the widespread application of nanomaterials in
the medical industry, nanoplatforms have been the most
commonly used materials in drug delivery.3 The platforms
are usually meticulously fabricated. By manipulating these
platforms, nano-drug delivery systems (NDDSs) can achieve
enhanced permeability and retention (EPR), improved circu-
lation capability, reduced toxicity as well as increased pene-
tration of biological barriers when compared to traditional
chemotherapy.4–6 Thus, these drug delivery systems (DDSs)
have the advantages of prolonging the half-life of drugs,
boosting drug accumulation, and conducting controllable
release at the target site, leading to minimized side effects
on the nontargeted tissues.7 These advantages give DDS an
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Abstract Cancer is one of the most fatal diseases that attract numerous efforts and attention
from researchers. Among plentiful therapeutic agents, chemotherapy is frequently
used in treating virulent tumors, and its insistent administration is useful in the ablation
of cancers; however, it also produces side effects. Biomimetic drug delivery systems
(BDDSs) provide an alternative route for antitumor therapy. Their endogenous sub-
stances may be extracellular vesicles, living cells, cell membranes, etc., which optimize
single-agent chemotherapy. They “upgrade” traditional drug delivery platforms by
combining the original drug with itself, disguised as a Trojan Horse, to trick the immune
system or tumor tissues to achieve higher targeting and lower immunogenicity.
Herein, we review three BDDS strategies being used recently in antitumor drug
development and their advances, aiming at providing general guidelines and oppor-
tunities in this field in the future.
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outstanding ability to treat various diseases, especially
cancer, making it a benign influence in medical applications.

Nowadays, significant advancements have been made in
the field, with multiple nanomaterials being adapted to DDS.
They can be categorized as “hard nanomaterials” (including
metals, metal oxides, carbon, graphene quantum dots, etc.)
and “soft nanomaterials” (including liposomes and polymer
nanoparticles [NPs], etc.).8 Although the traditional DDS
mentioned above facilitates better cancer treatment,
setbacks and challenges still exist, including poor tumor
penetration, high immunogenicity, rapid clearance of the
reticuloendothelial system, unsatisfactory toxic side effects,
etc.9 Nevertheless, the “off-target” effect is the most critical
one that needs to be addressed. The “off-target” effect, in
which a drug relocates an unintended drug target or “non-
canonical” target, is due to the similarity of the pharmaco-
logical target protein or pathway between the proper target
sites and other parts of the body. After intravenous adminis-
tration, the structure of the NDDS is greatly affected by the
complex environment in the body, resulting in inefficient
drug delivery and off-target biological distribution.10 This
“off-target” property damages normal tissue and organs,
produces numerous side effects, reduces the quality of life
of patients, and affects the effectiveness of chemotherapy to
a certain extent.11,12 The unsolved limitations have triggered
researchers to escalate and alter the original nanoplatforms.

Biomimetic DDSs (BDDSs) came into people’s view. BDDS
made full use of the “Trojan Horse” tactics by coating tradi-
tionalDDSor chemotherapeutic drugswith cellmembranes to

better “deceive” the body’s immune system and lesions (e.g.
tumors, inflammations, etc.) to obtain higher targeting accu-
racy, longer circulating time, and better EPR effects and
bioavailability. Drugs are encapsulated into extracellular
vesicles (EVs) secreted by thehost cells, or attached to intrinsic
proteins or the living cells (►Scheme 1). In general, compared
to traditionalDDS, BDDSsignificantly increases theproportion
of “self-components” and improves drug delivery perform-
ances in terms of reducing the “off-target” effect, promoting
precision therapy, reducing immunogenicity, and boosting
drug accumulation at tumor sites by using the camouflage
with autologous cells or components (e.g., the homing char-
acteristics of tumor cells), and this high-potencymedication is
available in smaller doses, or longer duration of therapy, and
triggers fewer side effects.

EVs are natural drug carriers with well-regarded intrinsic
abilities, including high stability with negatively charged
surfaces and the ability to avoid clearance, and are now
regarded as an acclaimed platform to deliver drugs to tumor
sites.13,14 Then, the cell membrane-coated platforms show
their advantages in interacting with biological substrates
and provide DDS with desirable targeting ability.15 In addi-
tion, living cell-based carriers are rich in surface ligands that
can effectively interact with specific cells or tissues accord-
ing to their different physiological functions, giving them the
potential to target different tumors.16 Given above, it is
crucial to prevent damage to living cells during drug loading,
and correspondingly, the immunogenicity of these living cell
carriers is the greatest among the aforementioned BDDS.

Scheme 1 A brief introduction of the biomimetic drug delivery system.
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Herein, based on antitumor therapy, we select and summa-
rize different kinds of BDDS exhibiting high tumor-targeted
delivery and therapeutic efficiency to demonstrate the latest
advancements in this field.

EVs for Targeted Drug Delivery

EVs are particles composed of artificially manufactured lipid
bilayers, and secreted by a variety of cells currently identifi-
able in the human body,17 and can be classified as exosomes
(50–150nm), microvesicles (150–500nm, or even >10 μm),
and exomeres (�35nm) according to the sizes.18 EVs, as
communicators between different cells in the body, are
considered prospective drug carriers with therapeutic impli-
cations. The past decades have witnessed a great deal of
enthusiasm and passion among researchers for the advan-
tages of EVs in blocking various diseases, particularly malig-
nant tumors.

EVs have a stronger enhanced delivery ability compared
with traditional DDS-like liposomes. Liposomes can only rely
on some coatings to avoid rapid clearance and a few targeting
ligands to increase cellular uptake, while EVs can not only
express various endogenous self-markers to escape the
recognition by the immune system but also use thesemakers
to interact with recipient cells and promote their internali-
zation.19 Piffoux et al modified EVs by fusion with lipo-
somes.20 They found that after the incorporation of EV, the
uptake of modified liposomes was significantly increased
(approximately 50%) compared to liposomes without EV
incorporation, suggesting the good performance of EVs in
enhancing cellular uptake of the carriers and also implying
that EVs have better cellular uptake than liposomes.

EVs are internalized by various pathways, including
passive membrane fusion and endocytosis. After being inter-
nalized, some EVs can escape from the endosomal/lysosomal
pathway,21 and at the same time have an immuno-evasive
function and good biocompatibility.22 The surface of EVs
can be modified by a variety of engineering techniques to
enhance cell-specificity or prevent nonspecific uptake,23 to
further strengthen their delivery ability. The Endosomal
Sorting Complex Required for Transport (ESCRT) Pathway
is the best-known pathway for EV production and cargo
sorting, which facilitates the loading of certain proteins
and RNAs with potential therapeutic options.24 EVs with
these characteristics have made certain progress in clinical
trials.25 For example, a phase I trial (NCT03608631) con-
ducted by MD Anderson Cancer Center investigated the
efficacy of mesenchymal stromal cell-derived exosomes
with KrasG12D siRNA (iExosomes) in participants with
pancreatic cancer whose KrasG12D mutation had spread
to other parts of the body. In addition, a phase II trial
(NCT01159288) to vaccinate tumor antigen-loaded dendritic
cell (DC)-derived exosomes in patients with unresectable
non-small cell lung cancer has now been completed.

Due to imperfection of isolation processes, the materials
used in a large number of studies contain compounds from
different kinds of EVs. Therefore, the article used the term
EVs to symbolize any of the types we mentioned above.26

Mesenchymal StemCell-Derived EVs for Targeted Drug
Delivery
First discovered in 1976,27 the mesenchymal stem cell
(MSC) is regarded as a kind of multipotent cell with
differentiation potential and self-renewal abilities,28 and
can be isolated from a variety of different organs or tissues
such as bone marrow, heart, lung, and adipose tissue,29 with
the characteristics of “double-edged sword.” On the one
hand, MSCs have immunosuppressive and anti-inflamma-
tory properties,30 which inhibit the activation of T cells, and
change the phenotype of macrophages and DCs,31 and are
the basis for the treatments of inflammatory disorders. On
the other hand, it establishes a tumor microenvironment
(TME), redounds tumor growth and metastasis,32 and par-
ticipates in TME formation.33 Nonetheless, it still holds the
ability to improve antitumor therapy due to its outstanding
tumor tropism ability, low immunogenicity, and applicabil-
ity for large-scale production.34 However, the safety of
using it for cell-based antitumor therapy remains debated
in academia.

MSC-derived EVs (MEVs) are similar to MSCs in many
aspects. However, it is worth noting that it has the advan-
tages of small size, prominent half-life, inferior immunoge-
nicity, and good penetration compared to the application
of MSC as a delivery platform.35 In mice experiments, the
cell-like lipid membrane also provides them with down-
regulated cytotoxicity. More importantly, MEVs seem to act
as a “mailman” to consign the information including DNA,
RNA, proteins, etc. to targeted cells,36 and therefore bear the
innate capacity to target malignancy sites in vivo,37 making
them natural vehicles for tumor-targeted drug delivery. The
ability of MEVs to transport functional endogenous bioma-
cromolecules has been confirmed bymany researchers. Of all
the components, nucleic acid is themost abundant. Jahangiri
et al suggested that miRNA (miR)-100 and miR-143 were
transferred fromMEVs to human colorectal cancer cells, and
inhibited cell proliferation and metastasis by manipulating
the miR-100/mTOR/miR-143 axis.38 Accordingly, Yao et al
showed for the first time that circRNA circ-0030167, isolated
from bone marrow MEVs, acts as a molecular sponge for
miR-338-5p while increasing the expression of a tumor
suppressor gene WIF1, thereby significantly arresting the
progression of pancreatic cancer (►Fig. 1).39 In addition,
their potential to upload exogenous compounds is being
simultaneously investigated. Pascucci et al found that pacli-
taxel (PTX)-treated MSCs were characterized by high drug
concentrations and low cell mortality, and were able to
secrete EVs that also contain PTX to inhibit tumor cell
proliferation and growth.40Meanwhile, Pinto et al examined
the effectiveness of MEV-encapsulated meta-tetra(hydrox-
yphenyl)chlorin (mTHPC) in combinationwith photodynam-
ic therapy (PDT) against peritoneal carcinomatosis. They
reported that due to the outstanding tumor-targeted func-
tion of MEVs, few organs were harmed under the violent
stimulation of PDT, and a stronger anti-metastasis effect was
detected.41 However, it is worth noting that MEVs, secreted
by cells treated with doxorubicin (DOX), would enhance
breast cancer resistance when delivered to the tumor,42
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suggesting that the antitumor effect may be related to the
type of cancer and the drugs loaded into the EVs.

DC-Derived EVs for Targeted Drug Delivery
DCs are specialized antigen-presenting cells (APCs) that
patrol humans’ bodies and are responsible for adaptive
immune responses,43 including immune surveillance,44 an-
tigen presentation,45, stimulation of naïve T cells,46 etc. They
are characterized by a stellate morphology and sustained
expression of major histocompatibility complex class II
(MHCII), and can uptake antigens andmigrate to the draining
lymph nodes to prime naïve T cells to generate a strong
immune response.47 Due to the great potential of DCs in
eradicating tumors, a great deal of effort has been invested in
the development of DC-based antitumor vaccines. However,
vaccine manufacturers might face issues like high cost,
relatively time-consuming,48 and the risk of in vivo DCs
being influenced by immunosuppressive factors produced
by the tumor.49 In this case, DC-derived EVs (DEVs) have
many of the key immunostimulatory properties of DCs, with
the benefits of a long shelf-life when frozen and relatively
simple good manufacturing practices (GMP) handling, and
therefore lower cost but the same or greater anticancer
efficacy.50 DEVs would be a better option for malignancy
therapies.

DCs are capable of secreting EVs withmultiple functions,51

mainly targeting immunecells. ComparedwithDCs,DEVshave
inherited characteristics from their parent cells, especially in
terms of surface molecules such as costimulatory molecules,
MHCI,MHCII, etc.48Membraneproteins bound to externalized
phosphatidylserine, suchasmilk fat globuleEGF factor 8, act as
intermediarybetweenDEVsandαvβ3orαvβ5 integrinson the
membranes of recipient cells, facilitating the penetration of
DEVs into the target cells, and thus are essential for the
enhancement of the targeted ability of DEVs.52 Thus, proper
modifications to the surface of DEVs could further enhance
their tumor elimination effect. For example, by applying

the DSPE–PEG–NHS linker, Fan and colleagues inserted an
anti-CD3antibody intothemembraneofDEVs to activate Tcell
response while also embedding an anti-epidermal growth
factor receptor (anti-EGFR) antibody to direct mature T cells
to the tumor sites (►Fig. 2).53 Notably, Zhu et al showed that
the direct conjugation of MUC1 glycopeptide (a molecule
overexpressed invarious cancers) on the surface ofDEVs could
upregulate the titers of immunoglobulin G antibody and
inhibit tumor growth.54 Infection of DCs with lentivirus-con-
taining special genesprior to isolationof EVs is another tool for
effective DEV surface engineering.55 Despite investigation
claiming that DEVs produced according to GMP can trigger
proliferation and activation of natural killer (NK) cells to
destroy tumors, this ismainly because theNKgroup2member
D (NKG2D) ligands and IL-15Rα that are originally bound on
the membrane,56 artificially engineered surfaces of DEV, still
proved to be a more effective way of targeted delivery.

Unlike MEV strategies, which load drugs more often, DEVs
are usually used to carry antigens to enhance the efficacy of
immunotherapy. One of the most important jobs of DEVs is to
demonstrate their immunostimulatory potential to stimulate
cytotoxic T lymphocyte responses, thereby controlling the
tumor as a “lifeless” antigen presentation machine. Therefore,
DEVs and their antigen fragments need to maintain a
certain degree of immunogenicity to achieve better therapeu-
tic efficacy. Antigens not only from tumors but also fromother
immune adjuvant-loaded DEVs are also commonly used as
vaccines to prevent and treat established tumors by activating
naïve T cells in a (cross) presentation manner.50,57 Li et al
reported that DEVs loaded with a multi-neoantigen peptide
exhibited excellent antitumor responses inmelanomamodels,
stimulating a broad-spectrum immune response and prevent-
ing immune escape.48 Interestingly, Damo et al loaded DEVs
with antigens from the melanoma model B16F10, and when
these EVs were incubated with toll-like receptor agonist poly
(I:C), they showed a proinflammatory Th1 response in tumor-
bearing animals. This suggests that the antitumor effect may
be related to their maturation environment.58

Tumor Cell-Derived EVs for Targeted Drug Delivery
Tumor cells usually secrete more EVs than other cells in the
body due to the formation of a TME that creates hostile
conditions like high acidity, hypoxia, genotoxic stress, etc.
Survival pressure caused by therapeutic factors like applying
chemotherapy drugs may also lead to increased secretion of
tumor EVs (TEVs).59,60 EVs from those malignant cells are
usually associated with tumor initiation, progression,
metastasis drug resistance, etc., leading to poor patient
prognosis.61,62 Specifically, TEVs have the role of inducing
tumor immune tolerance, promoting tumor angiogenesis
and vascular permeability, and developing chemoresistance
during the natural generation by the tumor cells.63–65 How-
ever, concerns arise when those exosomes are delivered to
the body as free, circulating particles, where causing tumor
metastasis is one of the biggest obstacles to the use of those
TEVs as drug delivery platforms because lipid-rich TEVs can
subvert normal cells and bring them into an abnormal state
in integrin and miRNA-dependent manner.66–68

Fig. 1 A schematic representation of the molecular mechanisms by
which MSC-Exos affects cell proliferation and metastasis in CRC
cells. CRC, colorectal cell. (Reproduced with permission from Jahangiri
et al38, copyright 2022 Elsevier B.V. All rights reserved.)
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Despite this, TEVs have great potential for targeted drug
delivery. The homing characteristics remain decisive. Qiao
et al designed a “Trojan horses” platform to encapsulate DOX
into TEVs on the basis that TEVs are more likely to interact
with the tumor cells than other cells due to the shared
protein and lipid composition. More importantly, the level
of TEVs absorbed by tumor cells was closely related to their
types, with the highest absorption efficiency occurring in
TEVs secreted by the aimed tumor, indicating themagnitude
of using specific TEVs in the preparation of drug carriers.69 In
addition, TEV, as an endogenous antigen itself, can be used to
sensitize immune cells, such as DCs, to boost antitumor
efficacy. Derived from the tumor cells, specific antigens
shared by the TEVs are displayed on their surfaces and can
be presented to CD8þ T cells by DCs through an MHCI-
dependent way.70 From this perspective, on the one hand,
when TEVs are used to deliver therapeutic agents, it is
important to minimize the immunogenicity of TEV to ensure
thatmore of the drug can reach the tumor site.We can do this
by inducing tumors by transplanting targeted cancer cell
lines into nude mice and isolating TEVs from tumor cells
harvested from the transplanted tumor. On the other hand, a
certain degree of immunogenicity should be kept to
stimulate immune cells to activate the intrinsic antitumor
response. Finally, some chemotherapy drugs (e.g., DOX) have
high selectivity toward TEVs and high stability in these
carriers,71 further confirming the excellent encapsulation
ability of TEVs.

In summary, EVs are natural carriers secreted by multi-
types of cells, with great potential for targeted drug delivery
and broad application prospects. Their innate malignancy-
targeting ability, tumor penetration redounding, and easy
surface modification enable them to achieve comprehensive
antitumor functions. Although EVs are superior to tradition-
al DDS in at least the aspects mentioned above, their low
yield and unsatisfactory retention time in the body still limit
their clinical use. Therefore, further research studies are
needed before entering clinical studies.

Cell-Membrane-Coated NPs for Targeted
Drug Delivery

In addition to using cell-mediated drug delivery to treat
cancers, cell membranes with naturally complex structures
and functional properties have gradually attracted the
attention of some researchers in the field of targeted admin-
istration. Different cell membranes prepared from erythro-
cytes, platelets, cancer cells, immune cells, etc., provide NPs
with a series of cell-specific proteins that can be leveraged for
dynamic and multiplex binding interactions, resulting in
function-driven and broad-spectrum bio-activity.72,73 The
prepared cell-membrane-coated coated NPs (CMCNs) are
usually made up of two parts, including (1) synthetic NP
cores, the inorganic or organic NPs that function as antitu-
mor drugs, and (2) layer of natural cell membranes, camou-
flage clothing that mimics the antigenic diversity of the

Fig. 2 Schematic diagram. (A) Schematic of the construction of anti-CD3 and anti-EGFR antibody-engineered tDC-Exo (Exo-OVA-aCD3/aEGFR).
(B) MHC–antigen complex and a co-stimulating molecule CD86 on Exo-OVA-aCD3/aEGFR can be regarded as the CAR of CAR T cells which could
activate endogenous T cells in vivo. (Reproduced with permission from Fan et al53, copyright 2022 Elsevier B.V. All rights reserved.)

Pharmaceutical Fronts © 2024. The Author(s).

Advances in Tumor Targeting Biomimetic Drug Delivery Systems Mo et al.



source cells. The combination of these two elements displays
characteristics of the parent cells on artificial NPs.74

CMCNs are constructed following an effective top-down
strategy, which has the potential to simplify the development
of drug delivery platforms with the required performances
that can be customized for a wide range of applications. The
preparation of CMCNsmainly involves two stages: membrane
derivation and membrane coating. The first step usually
contains methods like homogenization, hypotonic lysis, and
centrifugation, the latter possesses procedures like co-extru-
sion, sonication,microfluidic electroporation, cell membrane-
templated polymerization, etc.75 While natural membranes
can be used directly as coatings for NPs, they can also be
modified through lipid insertion,membrane fusion, or genetic
engineering to form hybrid clothing to obtain better perfor-
mance.15,75 During the manufacturing process, however,
attention should be paid to NPs partially coated with mem-
branes when thosemembranes were subjected to mechanical
forces such as extrusion or sonication.76

In general, CMCNs provide more opportunities for cus-
tom-tailored therapies. In this review, we focus on mem-
brane coats of erythrocytes, cancer cells, leukocytes, and the
hybrid membranes, because they are wildly investigated.

Erythrocyte Membrane-Coated NPs for Targeted Drug
Delivery
Erythrocyte membranes (EMs) are commonly used as a
naturally mimicking material in drug delivery because of
their unique benefits of extending from the original cells.77

First, the human body contains a large amount of erythro-
cytes, and the rawmaterials are readily available, making the
preparation process economic and elementarily achieved.
Second, membrane proteins on EMs are crucial in helping
them evade the immune system. CD47 is a protein highly
expressed in EMs that interacts with signal regulatory pro-
tein-α (SIRPα) on macrophages to inhibit phagocytes.78–80

However, there are still limitations, i.e., EMs from donors
should be matched to the patients’ blood type and Rh
compatibility to reduce the chance of inducing alloimmuni-
zation, which hinders large-scale production and prevents
researchers from translating this advanced strategy into
clinical applications.81,82 There are fixed standards and
specifications for EM extraction. Briefly, whole blood is
centrifuged to remove serum and fluffy precipitation, then
erythrocytes are subjected to hypotonic treatment to shed
intracellular components. Subsequently, after washing, son-
icating, or extruding through porousmembranes, EMs can be
coated on the NPs.77,80

EM-based passive delivery is widely used by many
researchers, such as combining EMs and photothermal
therapy according to EM carriers without targeting pieces.
Because under irradiation of near-infrared laser, EMs
would be disrupted, thus increasing the release of the
drug.83 Unfortunately, the effectiveness of this strategy
which mainly relies on the EPR effect for passive targeted
delivery faces controversy due to the lack of tumor-specific
adhesion molecules and low drug-loading capacity. EM-
based nanocarriers require special structural modifications

to enhance their tendency toward tumors and the ability
to deliver drugs to the site.84 RGD peptide is a tumor-
penetrating and cell-internalizing peptide that interacts
with αvβ3/αvβ5 integrin receptor overexpressed in tumor
tissues. Among all the targeting molecules, RGD peptide is
commonly used and shows good performance during drug
delivery. Xie and colleagues coated tranexamic acidþDOX
NPs with EMs modified by cRGD peptide to induce tumor
thrombotic infarction by precisely targeting and damaging
tumor vascular endothelium.85 Instead of delivering chemo-
therapeutics directly to the tumor tissues, Wang’s group first
used EMs to cloak worm-like siRNA; however, in this case,
the surface of the siRNA vector is positively charged, leading
to the adsorption of serum proteins and a much shorter
circulation time. By adjusting the ratio of siRNA to cationic
bovine serum albumin (cBSA), the surface charge can be
controlled to be negative at neutral pH but positive at lowpH,
resulting in the release of EMs released and lysosomal escape
through the proton sponge effect. Therefore, RGD is also
applied in the construction of carriers.86 In addition, target-
ing molecule combinations, such as combining anti-EGFR
and RGD peptide, also improves delivery.87

Interestingly, deformability is an important characteristic
of natural erythrocytes, and EMs derived from different life
stages will have different delivery functions. Deformability,
pH, etc. are critical conditions that should be emphasized
when using EMs as a basis for targeted delivery.88

Cancer Cell Membrane-Coated NPs for Targeted Drug
Delivery
Cancer cell membranes (CCMs) are likewise considered
effective drug delivery carriers. The anti-immune clearance
and homotypic binding capacity of the malignant cells are of
great importance during tumor formation and progression
(including tumor growth and metastasis). CCMs have been
reported to play a key role in fostering these competencies
of tumors. Specific molecules such as integrin αvβ3, N-
cadherin, epithelial cell adhesion molecule (EpCAM), and
galectin-3 have been demonstrated to help cancer cells
camouflage and recognize homologous cancer cells under
the surveillance of the immune system to lower their
immunogenicity. Therefore, CCMs should endow NPs with
superior homotypic targeting and immune escape abili-
ties.89–91 In this case, CCMs should be the basis of the DDS.
In addition, tumor cells, tumor cell membranes, and whole
tumor lysates are considered to be perfect polyvalent anti-
gens, and therefore rather than shipping drugs into the
tumors, their membranes could be used as cancer vaccines,
which is a feasible cancer therapy. For example, cloaking
aluminum phosphate absorbing adjuvant CpG can provide
comprehensive tumor antigens to APC and other relevant
immune cells, and enhance specific antitumor immunity.92

Covering NPs with CCMs has proven to be a valid and
commonly used method of drug delivery. The coated NPs
gain a membrane phospholipid bilayer structure as well as
cancer surface proteins to be decoys or Trojan horses for
precise treatment of cancer. Jin et al demonstrated that
simply fabricating CCMs on poly (lactic-co-glycolic acid)
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(PLGA) NPs can interfere with cancer cell� stromal cell
interactions to reduce fibroblast-mediated invasion and
metastasis while activating the following-up immune
response (►Fig. 3).93

Compared to other NDDSs, CCM-coated NPs are more
capable of crossing biological barriers such as the blood–
brain barrier, blood–brain–tumor barrier, etc., without re-
dundant decorations on CCMs themselves. Wang and col-
leagues designed a novel brain tumor imaging and surgical
navigation system by coating Er-based lanthanide-doped
NPs (LnNPs), NPs which have excellent near-infrared-IIb
luminescence performance, with CCMs. Thanks to the excel-
lent tumor-homing ability, the system can visualize brain
tumor boundaries and guide surgical resection.94 Some
researchers, when trying to increase the accumulation of
NPs at the tumor site, choose ligands like Asn-Gly-Arg (NGR)
on the CCMs for better targeting.95 In the process of surface
modification, to improve the target capability of CCM, it is
necessary to pay attention to the modification efficiency.
Zheng et al reported that when decorating bladder cancer
membranes that will subsequently be camouflaged on PLGA
NPs, proceeding on live tumor cells before isolating the
membranes will help to sustain the correct positioning of
modifiers at the extracellular side of the membrane.96

As we mentioned before, these carriers may increase the
risk of tumormetastasis and progression, and thus face some
controversies. TEVs contain nucleic acids and proteins that

are already present in parent tumor cells and may be a set
of pro-tumor progression, pro-metastasis, and pro-drug
resistance messengers. Encouragingly, CCMs with simple
membrane structures can be a solution to this dilemma. In
conclusion, CCM-coated NPs are foreseeable promising
materials for future precise medicine manufacture.

Leukocyte Membrane-Coated NPs for Targeted Drug
Delivery
Leukocytes can be divided into granulocytes and agranulo-
cytes which can differentiate into neutrophils, eosinophils,
and basophils, or monocytes and lymphocytes, respectively.
Same as other cell membrane-coated NPs, leukocyte mem-
branes (LMs) enable NPs to escape from the rapid clearance
and increase their circulation time. Due to their high affinity
for inflamed areas (e.g., tumor sites peculiarly), they are now
regarded as a new carrier for targeted delivery of antitumor
drugs.97 NPs mimicking leukocytes, as well as other types
of cell membrane-coated NPs, can mimic the interaction
between leukocytes and cancer cells, thereby enhancing
tumor therapeutic capacities (►Fig. 4).98

Interestingly, LM-coated NPs can be used for drug delivery,
as well as for isolation and downstream studies of circulating
tumor cells (CTCs). These NPs can bind to CTCs because they
are homologous to leukocytes and simultaneously repel the
living leukocytes tomake up a high-density CTC environment.
Zhou et al first prepared graphene nanosheets that combined

Fig. 3 (A) Schematic illustration of the preparation of cancer cell plasma membrane fraction-coated PLGA NPs (CCMF-PLGA NPs). (B) The
purpose was to determine the ability of these cancer cell-mimicking NPs to disrupt cancer cell–stromal cell interactions, reduce metastasis,
and prime the immune system for cancer immunotherapy. NPs, nanoparticles. (Reproduced with permission from Jin et al93,
copyright 2019 American Chemical Society.)
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Fe3O4 NPs and disguised them with LMs. By inserting lipid
linkers onto the membranes, the antibodies could be conju-
gated to the LMs, resulting in high capture efficiency and
enhanced anti-leukocyte absorption.98,99

Macrophages are specialized APC with long blood half-life
and specific binding abilitywith tumor tissue. In addition, their
superior ability to recognize antigens, better cellular interac-
tions, gradual drug release, and reduced toxicity in vivo con-
tributed to their availability in antitumor drug development.
This targeted nature makes macrophages and macrophage
membranes (MMs) excellentmaterials for carrying therapeutic
drugs for cancer treatment. By co-extruding NPs from the
extracted MMs, successfully MM-coated NPs have a thin layer
on the surface, are slightly larger in size, have a negatively
charged surface zeta potential, and contain membrane pro-
teins.100,101 Li et al created an MM-coated nano-gemcitabine
system that restores the tumoricidal function of lymphocytes
by upregulating PD-L1 expression. The study used MMs with
tumor-tropism characteristics to enhance drug accumulation
at tumor sites.102 Tumor-associated macrophages (TAMs), liv-
ing in the TME, have high levels of colony-stimulating factor 1
receptor on their surfaces, and CSF1 secreted by cancer cells
significantly promotes the polarization of TAMs toward M2-
macrophages, which are responsible for immunosuppressive
characteristic in TME. Inspiringly, Chen et al fabricated TAM
membrane-coated NPs that would selectively bind CSF1 as a
mock TAM to eliminate primary tumor growth.101

In addition to macrophages, the membranes of T cells and
NK cells have also been significantly studied. T cell, as an
instinctive killer in humans, displays numerous receptors on
its membrane aiming at recognizing abnormal cells like
cancer cells. Inspired by chimeric antigen receptor (CAR)
therapy, a number of immunotherapies based on T cell
membranes (TMs) have been exploited. Different antibodies
(e.g., anti-EGFR) can be decorated on the TMs while chem-
icals can be loaded inside the membranes, resulting in CAR-T
like nano-robot that can be used to breach biological barriers
and improve therapeutic outcomes.103 Furthermore, Kang et
al proposed a technique to combine different molecules
including FasL, PD-1, LFA-1, and TGF-β1R to activate strong
immunoresponses. T-cell-membrane-coated nanoparticles
and anti-cancer drug loaded T-cell-membrane nanoparticles
can perform tasks like “real” T cells via FasL and release drugs
inside, what's more exciting is that those NPs are free from
immunoexhaustion because they are not living cells and they
can block the immune checkpoint interactions.104

Hybrid Cell Membrane-Coated NPs for Targeted Drug
Delivery
Hybrid cell membranes (HCMs) are a new type of cloaking
membrane for NPs that inherit unique characteristics from
two-parent cell lines.105 In contrast to single-cell membrane
(SCM)-coated NPs, which can only be characterized from
one type of cell, HCMs have the gifted ability to overcome the

Fig. 4 Schematic summary of using LM-coated nanoparticles for medical applications. LM NPs are made by cloaking plasmamembranes derived
from natural lymphocytes onto synthetic cores. LM, leukocyte membrane; NP, nanoparticle. (Reproduced with permission from Wang et al98,
copyright 2022 Wiley-VCH GmbH.)
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limitations of SCMs to enhance the functionality of nano-
materials.106 The pivotal proteins and properties inherited
from both of the parent cells enable multifunctional biomi-
metic nanomaterials to perform increasingly complex tasks
in dynamic biological environments more effectively and
safely.107 When we prepare HCMs, we need one more step
than SCMs, which is the fusion of two different membranes.
This procedure can be accomplished by two respective
methods. One is, of course, to extract the membranes before
fusion and the other is to fuse cells before extraction. Among
the two membranes used for constructing the drug delivery
platform, one should at least offer the targeting ability and
the other should offer favorable characteristics for drug
administration and release (►Fig. 5).108

Based on this thread, many drug delivery platforms have
emerged. Shen et al prepared a self-assemble Nano/ZnO and
miR21 antagomir NPs and coated themwith the membranes
of LnNPs and cancer cells, which enabled NPs to have
immune escape and homologous targeting abilities.109Novel
frameworks, such as tetrahedral framework nucleic acid
consisting of four single-stranded DNAs with ingeniously
designed sequences, can also be modified with HCMs made
from DSPE-PEOz liposomes and EMs, which can speed up
drug the release process in acidic environments, as well as
enhance circulating time and NP accumulation at tumor
sites. In this study, in order to overcome the dilemma of
the lack of targeting tendency of erythrocytes, an anti-HER2
aptamer was utilized to direct the NPs to the right place.110

Besides, delivery systems combining the membranes of
erythrocytes and cancer cells, liposomes and cancer cells,
etc. have also been explored.111,112 Rather than delivering
drugs directly to tumor cells, Zang et al shifted the focus to
using cancer-associated fibroblasts to cut off the nutritional
supply of tumors by delivering solid lipid NPs containing PTX
and glycolysis inhibitor PFK15 coated with hybrid

membranes. Evidence suggests that the hybrid biomimetic
camouflage formed by breast CCMs and activated fibroblast
membranes improves antitumor efficiency.113 However,
despite many attempts to explore NP coatings combining
different membranes, much remains unknown. Therefore,
further efforts in this field are still needed.

Living Cells for Targeted Drug Delivery

The study of cell-mediated drug delivery methods has been
an attractive area in recent years, as these DDSs show great
potential for targeted drug delivery. The traditional DDSmay
be fast and prematurely cleared by the mononuclear phago-
cytic system and loss of efficacy of PEG-modified NPs under
continual administrations because of the stimulation such as
the immune system.114,115 Compared with traditional DDS,
cell-mediated drug delivery has the advantages of hypoim-
munogenicity, good stability, biocompatibility, and extended
circulating time (►Fig. 6).116,117

In this case, in terms of different types of circulatory cells,
including erythrocytes, leukocytes, platelets, and DCs, living
unfettered cells can be used as efficient delivery machines to
transport NPs, e.g., those synthetic carriers are bound to
circulatory cells by loading the drugs into their internal
volume or binding the drugs to their surface via covalent
or noncovalent coupling.118

Erythrocytes Used for Cell-Mediated Targeted Drug
Delivery
Erythrocytes are the most abundant cells in human
blood, accounting for 40% of the total.119 Mature cells are
oxygen-carrying cells, disc-shaped, biconcave, and without a
nucleus.120 In the process of antitumor therapy, erythrocytes
act as carriers of drugs and transfer the loading drug from the
carrier cells (i.e., erythrocytes) to the malignant cells, which

Fig. 5 Hybrid cell membrane-camouflaged nanoparticles (HMC@NPs) designed for cancer diagnosis and treatment. Cell membranes from
different types of natural cells were extracted and leveraged to wrap around different nanoparticles for the theranostic of cancer.
(Reproduced with permission from Chen et al6, copyright 2020 Elsevier B.V. All rights reserved.)
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is characterized by long circulation time and better biodis-
tribution.121 Specifically, the “Don’t eat me” sign displayed
by CD47 and other receptors on their surfaces helps them
avoid the degradation of the phagocytosis and assist the
NDDS to escape from the clearance of the immune system at
the same time.122

To establish a living erythrocyte-based DDS, several
approaches have been commonly explored, known as
erythrocyte hitchhiking (passive adsorption) and attachment.
Traditional NDDSs already contain chemotherapeutics or pro-
tein pharmaceuticals or small-molecule drugs, and delivery in
combination with erythrocytes is one of the methods we are
currently exploring to enhance the efficacy of the carriers.

The erythrocyte hitchhiking is proposed to solve the
problem that NPs injected into the body are rapidly elimi-
nated by the liver and spleen, thus causing “off-target” effect
when drugs are particularly targeted for the lungs and
brain.123 In erythrocyte hitchhiking, changes in shear stress
are critical for triggering the release of NPs in microcapilla-
ries. We found that the detachment rate of NP hitchhiking on
the cell surfaces increases with elevated stress, implying that

this strategy can be used for recognition between abnormal
sites and normal sites for more efficient drug delivery.124

Erythrocyte attachment, on the other hand, is the most
commonly used antitumor strategy.Withdifferent techniques,
NDDS can be affixed to erythrocytes. Among them, lipid
insertion, biotin–avidin bridges, EDC/NHS coupling, and anti-
body/ligand-receptor conjugation are the four commonly used
methods to construct erythrocyte-based DDS (►Fig. 7).125

Liu et al reported an erythrocyte-based DDS that unites an
oxygen-transporting function (correcting tumor hypoxia
environment) with PDT-sensitive NPs through the interac-
tion of avidin and biotin. They stated that owing to the
erythrocytes, the DDS could achieve long tumor retention,
therefore enhancing therapeutic efficacy.126

Efforts have also been put into combining the two
approaches, and it is believed that we can fully utilize the
advantages of each. Ferguson et al reported an intravascular
nanocarrier that combines erythrocyte ligand conjugation and
hitchhiking. By applying different kinds of antibodies or
adhesion molecules, NPs can achieve erythrocyte hitchhiking
at the beginning, and then due to the proximity between the

Fig. 6 Advantages of nanoparticles and circulatory cells in drug delivery. Circulatory cells, including red blood cells, monocytes, platelets, and
lymphocytes, have natural drug-delivery abilities. (Reproduced with permission from Anselmo et al118, copyright 2014 Elsevier B.V.
All rights reserved.)
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erythrocytes and the NPs, the ligand–receptor bound to the
targeted cells (e.g., tumor cells), thus releasing the NPs.127

Platelets Used for Cell-Mediated Targeted Drug
Delivery
Platelets are disc-shaped, anucleate fragments derived from
megakaryocytes that play a critical role in maintaining hemo-
stasis and thrombosis in the body, including those in tumor
vasculature. Increasing evidence suggests that platelets are
also involved in other processes such as immune responses,
angiogenesis, and lymphatic vessel development, which may
be relevant to tumor occurrence, growth, and metastasis.
Platelets generally have a lifespan of 7 to 10 days.128,129

There is an interactionbetween cancers andplatelets. Recent
studies have pointed out that tumor cells promote platelet
production and aggregation, leading to a number of cardiovas-
cular diseases. Platelets, on the other hand, are responsible for
cancer progression and metastatic dissemination by modulat-
ing the TMEby releasingmultiple growth factors andbinding to
the surfaces of tumor cells to protect CTCs from shear stress and
shield them from recognition by immune cells.130–132

Platelets are natural carriers for antitumor drug delivery,
and platelet-mediated platforms offer the advantages of readi-
ly available, well-tolerated, and relatively low direct produc-
tion costs in comparison to traditional DDS.133 These carriers
can be hypoimmunogenic as they can be harvested from the
patients themselves.134 When an in situ tumor is seeking

metastasis, selectins and integrins’ interactions between the
two substances are significant during platelet contact with
tumor cells. This character makes platelet hitchhiking NPs
possible.135 On this basis, N3-mediated click chemistry can be
utilized to fasten Granzyme B-loaded NPs on the surface of
platelets, and by hitchhiking platelets, the system can respond
to acidic TME and release NPs to attack tumor cells.136 The
platform is highly suitable for postsurgical cancer treatment.
Platelets here are called “bridges” which fill the gap between
NDDS and tumor cells.137At the same time, theuse of platelets
as a basic component of immunotherapy is also a hot area of
research. Anti-PD-1 antibodies (aPD-1) are conjugated on the
surfacesofplatelets.Whenplatelets are activatedafterarriving
at tumor sites, aPD-1 is released in the formof platelet-derived
microparticles that can subsequently bind toT cells to enhance
the efficacy of immunotherapy.138,139

Leukocytes Used for Cell-Mediated Targeted Drug
Delivery
Leukocytes are important participants in thebody’s innateand
adaptive immunity,whichare involved in the protection of the
body from infectious diseases and the removal of cell debris
and foreignantigens.140,141 Leukocytes canbedivided intofive
categories according to their physiological functions and
characteristics: neutrophils (amount in blood: 50–70%), lym-
phocytes (25–35%), monocytes (2–8%), eosinophils (1–3%),
and basophils (0.4–1%). Leukocytes provide an excellent

Fig. 7 A schematic diagram of (A) lipid insertion, (B) biotin–avidin bridges, (C) EDC/NHS coupling, (D) antibody/ligand-receptor conjugation,
and (E) passive adsorption (hitchhiking) methods for refunctionalization of erythrocyte-based nanomedicine. (Reproduced with
permission from Sun et al125, copyright 2019 Ivyspring International Publisher.)
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opportunity for drug delivery due to their long-circulating
time, tumorpenetration tendencies, and the capability to cross
biological barriers. While traditional NDDS is hindered by a
varietyof biological barriers, such asbloodvessels, agents such
as leukocytes hijacked by NPs can take full advantage of the
targeting motility and transmigration ability of leukocytes to
deliver NPs to inflammatory such as tumors.142,143 Similar to
erythrocyte carriers, leukocyte-based platforms can be con-
structed byNPs, free drug hitchhiking, or internalization.144 In
this review, we focus on neutrophil- and lymphocyte-based
DDSs.

Neutrophils are the largest group of leukocytes. Adminis-
tration via activated neutrophils is a promising approach to
antitumor drug delivery, as neutrophils have natural chemo-
taxis to inflammatory signals from progressing tumors. Using
their sophisticated cellular machinery, neutrophils can pene-
trate the tumor-associated endothelium and infiltrate the
TME.145 There are two methods to construct DDS, including
incubating neutrophils with drugs before administration or
hijacking neutrophils in the bloodstream. For the former
method, neutrophils act perfectly as Trojan Horses, releasing
the therapeutic cargoes at the tumor site by releasing neutro-
phil extracellular traps (NETs).146 Inflammation is one of the
main causes of NET release. Thus, Ren et al designed a neutro-
phil-mediated liposome co-loaded with PTX and hydroxy-
chloroquine to form NETs that “open” the cells and release
the liposomes when activated by cytokines secreted by the

tumor-related cells.147 By inducing tumor cell death and
inhibiting theirautophagyat thesametime, abetterantitumor
effect can be achieved. This technology can also be applied to
deliver drugs to different organs such as bone marrow.148 For
the latter, antibody conjugation can be used to capture and
internalize NPs via activated neutrophils after intravenous
injection.149However, thismethodmight encounter problems
with the rapidclearanceof injectedNPsby the immunesystem
and therefore requires further investigation.

T cells interfaced with antitumor agents have also been
explored in recent years, and the distinctive features of
cytotoxic T-lymphocytes (CTLs) have been exploited to
design a T cell-based platform for cancer therapy. When
CTLs interact with tumor cells, they release perforin and
granzymes into the immunological synapse formed between
the CTLs and target cells. The nanocapsules attached to the
surfaces of the CTLs entered the synapse andmet the perforin
secreted by CTLs, leading to the disruption of the nanocapsule
and release of encapsulated drugs in tandemwith the lysis of
the tumor cells.150 In addition, innovative carriers, as shown
in ►Fig. 8, a TA-encapsulated polymeric micelle decorating
with aPD-1 on the surface,which can bind circulating PD-1þ T
cells to overcome immune checkpoint blockade resistance, are
still under careful research.151

In summary, the use of living cells for the targeted
delivery of antitumor agents or diagnostic reagents is an
emerging approach that has made significant progress to

Fig. 8 Schematic illustration for the antitumor mechanism of nanodrug in overcoming immune checkpoint blockade resistance in HCC. HCC,
hepatocellular carcinoma. (Reproduced with permission from Wang et al151, copyright 2023 BMJ Publishing Group Ltd & Society for
Immunotherapy of Cancer.)
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date, but the challenges in this field cannot be ignored. First,
the most common strategy is to separate carrier cells and
load drugs into these cells before administration, which may
affect the original characteristics of cells, and the drugs may
undergo complex intracellular processes in living cells. In
addition, drug-loading efficiency is relatively low due to the
limited drug-cell binding capacity. Also, the leaking of drugs
into the body from the exogenous cells is an urgent issue.
Once these issues are addressed, this therapy could have a
revolutionary impact on the process of eliminating tumors.

Summary

BDDSsmimic the structures and functions of various natural
substances. BDDS, like well-trained and well-equipped
plainclothes policemen, can achieve better targeting,
improve the efficiency and accuracy of drug delivery, and

make up for the shortcomings of existing NDDS. BDDS is able
to better address the current problems faced by traditional
chemotherapeutics and DDS, and thereby an ideal candidate
for cancer treatment. In this article, the performances and
advances of three BDDS, i.e. EVs, living cell-based drug
carriers, and membrane-coated NPs, have been reviewed
in antitumor therapies, and are summarized in►Table 1. The
emergence of BDDS breaks through the limitations of tradi-
tional nanomedicine, with higher targeting ability, longer
circulating time, excellent capacity to cross biological bar-
riers, and higher drug accumulation at the tumor sites, and
brings more opportunities for targeted tumor therapies. In
the future, biomimetic systems can produce unified and
standardized formulations for most patients on the one
hand, and can also design more adaptable drugs for specific
patients, achieving personalized precision medicine on the
other.

Table 1 Brief introduction of the current BDDS

BDDS type Source cells Advantages Disadvantages Tumor cell model Pharmacological factors Ref.

EVs MSC Smaller size, prolonged
circulating time,
industrial application,
malignancy-targeting
ability

Building tumor
microenvironment,
immunosuppressive
behavior

CFPAC-1 Paclitaxel 40

PANC-1,
MIA-PaCa-2,
CFPAC-1

circRNA circ_0030167 39

B16/F10 PI3Kγ inhibitor 154

CT26 Photodynamic therapy
agent mTHPC

41

DCs Boost the efficacy of
immuno-
therapy

High cost,
time-consuming

B16-OVA Anti-CD3 antibody
membrane insertion

53

B16-MUC1 Tumor antigen
MUC1 glycopeptide
membrane conjugation

54

B16F10 CTX 155

B16F10 Tumor antigen-loaded inside 58

Tumor cell Homing, immune cell
sensitization, and high
absorption

Induce tumor immune
tolerance, promoting
neoplastic angiogenesis

MDA-MB-231/luc TLR3 agonist and ELANE 156

4T1 FeS2 nanozyme 157

HT1080, HeLa Doxorubicin 69

CMCNs Erythrocyte Sufficient rawmaterials,
immune escape

Induce alloimmuniza-
tion, complex
extraction process

B16F10 Worm-like siRNA 86

HepG2 Mesoporous silicon
nanoparticle

158

Saos-2 DOX-loaded ZC NPs 159

Tumor cell Homotypic targeting
and immune escape
abilities

Difficult extraction SMMC-7721 Lenvatinib@PAE NPs 160

HeLa, MCF7, etc. AuNPs 161

Leukocyte Increased circulation
time, high affinity
toward tumors

Lack of economic
manufacturing process-
es and high-standards of
quality assurance

Kasumi-1, U937,
MV4–11, etc.

Glycyrrhetinic
acid/PLGA NPs

162

KYSE-150 DOX-loaded
lipid nanovector

163

Hybrid cell
membrane

Multi-features from
parent cells

Cell membrane damage
caused by hybridization

SKBR3, BT474 Maytansine-loaded
tetrahedral framework
nucleic acid

110

Living cell
drug
delivery
system

Erythrocyte Long circulation time
and immune escape

Lack of targeting
molecules

– Upconversion NPs,
hitchhiking

125

Platelet Low costs,
hypoimmunogenic

May contribute to
cancer progression and
metastatic
dissemination

C1498 Anti-PD-L1 antibody
surface conjugation

137

138
B16F10, CT26, 4T1

(Continued)
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One of themost challenging problems faced by traditional
small-molecule chemotherapy drugs and conventional DDS
is the adverse effects caused by the “off-target” effect,
relatively high dose, and high immunogenicity. BDDS offers
a possible solution to these problems. BDDS carriers not only
have a variety of natural targeting molecules on their surfa-
ces that can precisely direct the drugs to the tumor sites but
also have “self” characteristics that allow them to avoid rapid
clearance by the immune system. In this case, the adverse
effects can be minimized by applying smaller doses while
achieving the same therapeutic effect as before or even
better.

BDDSs are all obtained frombio-materials and carry a large
number of biological macromolecules, so one of the key issues
of BDDS is their immunogenicity. Overcoming the inherent
immunogenicity of BDDS will be an urgent problem to be
solved in large-scale industrial production in the future. We
believe that by modifying cell biofilm, controlling the compo-
sition of biomimetic membranes, ensuring consistency of
source, avoiding heterologous issues, etc., more BDDSs will
enter clinical trials and even be on the market.

The advanced DDS still has many other challenges and
difficulties in ensuring carrier separation and purification
effect, unclear mechanism of functioning in vivo and clinical
transformation. Questions such as “Will there be interactions
between natural components of the human body and artifi-
cially modified components that are not conducive to drug
delivery?,” “Can artificially processed natural materials still
efficiently maintain the functions of their parent tissues or
cells?,” or “Can current technology support the mass produc-
tion and clinical application of BDDS?” still need to be
answered. In addition, the safety of various materials cur-
rently used to construct BDDS has not been thoroughly and
meticulously evaluated and has rarely been approved by
the U.S. Food andDrug Administration, which to some extent
limits the subsequent clinical conversion of such drugs.

To solve these problems, several new strategies have been
proposed. Recently, EVs isolated from natural grapefruit and
ginseng, instead of from mammals, were reported in antitu-
mor therapy in combination chemotherapeutics. Those
plant-derived EVs are low immunologically, green, renew-
able, and mass-producible, and are expected to ameliorate
the shortcomings of EVs and bring new hopes for
patients.152,153 Many researchers have been trying to com-
bine traditional DDS with biomaterials to achieve better
therapeutic effects by using hybridizing liposomes, cell
membranes, and other materials. It seems that strategies
applied to traditional DDS, such as modification of the NP

surfaces using PLGA and targeted molecules, appear to be
equally feasible with BDDS and could improve antitumor
efficacy.

Despite the issues encountered with BDDS, as mentioned
earlier, the advantages of these systems are also evident. EVs
seem to be the most promising carrier for tumor diagnoses
and treatment. To date, several EV-based drugs are in clinical
trials. The large number of EVs currently points to new
directions in the treatments of Crohn’s disease, chronic
obstructive pulmonary disease, empyrosis, etc. The smaller
size and “lifeless” characteristics give them a better ability to
evade immune clearance and stability compared to living
cell-based nano-carriers. While the proteins and nucleic
acids contained within them may be sources of immunoge-
nicity and a driver of tumor metastasis (especially EVs
derived from tumor cells), some of the endogenous sub-
stances in EVs have intrinsic antitumor activity, which to
some extent gives them an advantage over cell membrane-
coated NPs.

It is believed that with further research in the fields of
materials science and molecular biology, BDDS will be more
widely used and play an important role in weaponizing
common substances in the body to fight tumors.
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