SYNTHESIS ALERTS

Synthesis Alerts is a monthly feature to help readers of Synthesis keep abreast of new reagents, catalysts, ligands, chiral auxiliaries, and protecting groups which have appeared in the recent literature. Emphasis is placed on new developments but established reagents, catalysts etc are also covered if they are used in novel and useful reactions. In each abstract, a specific example of a transformation is given in a concise format designed to aid visual retrieval of information.

Synthesis Alerts is a personal selection by Paul Blakemore, Stephen Brand, John Christopher, Emma Guthrie, Philip Kocienski, Louise Lea, Graham McAllister, Russell McDonald and Robert Narquizian of Glasgow University. The journals regularly covered by the abstractors are: Angewandte Chemie International Edition, Bulletin of the Chemical Society of Japan, Chemistry A European Journal, Chemistry Letters, European Journal of Organic Chemistry, Helvetica Chimica Acta, Heterocycles, Journal of Organic Chemistry, Journal of the American Chemical Society, Organometallics, Synlett, Synthesis, Tetrahedron, Tetrahedron Asymmetry and Tetrahedron Letters.

Georg Thieme Verlag does not accept responsibility for the accuracy, content, or selection of the data.

Scandium(III) Trifluoromethanesulfonate		
A catalyses the Friedel-Crafts alkylation of a range of aromatic componds with methanesulfonates derived from secondary alcohols.		
H. Kotsuki, T. Oshisi, M. Inoue Synlett 1998, 255.		

| Chiral (Salen) Mn(III) Complex / Ammonium Acetate | |
| :--- | :--- | :--- | :--- |
| The title reagent pair catalyse the asymmetric | |
| epoxidation of various unfunctionalised olefins by | |
| hydrogen peroxide. | |
| P. Pietikäinen Tetrahedron $1998,54,4319$. | 3 examples given (yields $71-90 \%$, \%ee 84-96\%). |

Microencapsulated Scandium(III) Trifluoromethanesulfonate Catalyst		
Polystyrene microcapsules (MC) of scandium(III) triflate were found to catalyse a wide variety of reactions (eg. imino aldol, aldol, Mannich, Michael, Friedel-Crafts acylation). The microencapsulated form of the Lewis acid was found to be more active than monomeric material and could be recovered via simple filtration. S. Kobayashi, S. Nagayama J. Am. Chem. Soc. 1998, 120, 2985.	$\mathrm{MC} \mathrm{Sc}(\mathrm{OTf})_{3}$ A	Various reactions are illustrated (yields $>76 \%$). In each case no decrease in activity was noted when the catalyst was re-used in subsequent transformations. The simple preparation of the catalyst is described.

1,10-Phenanthroline-Palladium(I) Complex		Catalyst
The title reagent catalyses the tandem cyclisation/hydrosilylation of functionalised 1,6-dienes to afford the corresponding trans cyclopentanes. R. A. Widenhoefer, M. A. DeCarli J. Am. Chem. Soc. 1998, 120, 3805	 Ar $=3,5$-bis(trifluoromethyl)phenyl	

Tris(dibenzylideneacetone)dipalladium(0)-Chloroform Adduct Catalyst		
The title reagent catalyses the regio- and stereoselective hydrocarboxylation of arylallenes. M. Al-Masum, Y. Yamamoto J. Am. Chem. Soc. 1998, 120, 3809.	$\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}$ A	

Nickel(II) Acetylacetonate		Catalyst
The title reagent catalyses the homoallylation of benzaldehyde with 1,3-dienes. M. Kimura, A. Ezoe, K. Shibata, Y. Tamaru J. Am. Chem. Soc. 1998, 120, 4033.	$\mathrm{Ni}(\mathrm{acac})_{2}$ A	10 examples (yields 55-95\%). High 1,2-, 1,3- and 1,2,3-diastereoselectivities are typically obtained (1,3 -anti:syn > 15:1, 1:15 < 1,2-anti:syn < 5.2:1).

Molybdenum Metathesis Catalyst		Catalyst
The title reagent catalyses the asymmetric ring-closing metathesis (ARCM) of racemic 1,6-dienes. J. B. Alexander, D. S. La, D. R. Cefalo, A. H. Hoveyda, R. R. Schrock J. Am. Chem. Soc. 1998, 120, 4041.	 A $\mathrm{Ar}=2,5$-di isqpropylphenyl	8 examples (product yields $<5,40-55 \%$, $\%$ ee $<5,45-93 \%$; recovered diene 17-50\%, \%ee <5, 57, 91-99\%).

Sodium Lanthanum Tris(binaphthoxide)		Catalyst
The title reagent catalyses the enantioselective Michael addition of thiols to cycloalkenones. Analogous complex B catalyses enantioselective protonation in the Michael addition of thiols to acyclic thioenoates. E. Emori, T. Arai, H. Sasai, M. Shibasaki J. Am. Chem. Soc. 1998, 120, 4043.		6 examples of enantioselective conjugate addition employing A (yields $56-94 \%$, \%ee $56-90 \%$). 5 examples of asymmetric protonation in Michael reactions employing B (yields 50-98\%, \%ee 75-93\%).

Butylstannonic Acid		Catalyst
The title catalyst mediates the transesterification of esters under mild conditions. R. L. E. Furlán, E. G. Mata, O. A. Mascaretti Tetrahedron Lett. 1998, 39, 2257.	 A	12 examples (yields $0,46-100 \%$) are described. The use of \mathbf{A} in the acetylation / deacetylation of alcohols is also described.

N-(1,2,3,4,6,7,8,9-Octahydroa	onyl)ephedrine		Chiral Auxiliary	
The title auxilliary mediates the stereoselective aldol reaction of propionate derivatives. J.-F. Liu, A. Abiko, Z. Pei, D. C. Buske, S. Masamune Tetrahedron Lett. 1998, 39, 1873.	 A			For: $\mathrm{R}=n-\mathrm{Bu}$ $i-\mathrm{Pr}_{2} \mathrm{NEt}, 95 \%$ syn:anti = 93:7 dr = 97:3 For: $\mathrm{R}=c$-hex $\mathrm{NEt}_{3}, 95 \%$ anti:syn $=98: 2$ $\mathrm{dr}=86: 14$

17-Diphenylphosphino-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-15,17,19-triene [igand				
A Palladium(0) complex derived from the title ligand catalyses the cyanation of aryl halides with sodium cyanide. T. Okano, M. Iwahara, J. Kiji Synlett 1998, 243.	 A		$\mathrm{NaCN}(3 \mathrm{eq})$ $\mathrm{PhPdBr}\left[\mathrm{PPh}_{2}(\mathrm{bc}-5)\right]_{2}(0.3 \mathrm{~mol} \%)$A $(0.7 \mathrm{~mol} \%)$ dioxane, ${ }^{2}, 20 \mathrm{~h}$ 91%6 examples (yields $85-93 \%$.	

N-[2-(Diphenylphosphino)benzylidene]-2-phenylethylamine		Ligand
A palladium(0) complex derived from the title ligand effects the syn selective carbostannylation of acetylenes by alkynyl stannanes. E. Shirakawa, H. Yoshida, T. Kurahashi, Y. Nakao, T. Hiyama J. Am. Chem. Soc. 1998, 120, 2975.	 A	10 examples (yields $52-82 \%$). Addition is always exclusively synalthough regioselectivity is highly substrate dependent.

(R,R)-4,6-Dibenzofurandiyl-2,2 '-bis(4-phenyloxazoline) (DBFOX/Ph)			Ligand
Various cationic aqua complexes derived from the title ligand and transition metal(II) perchlorates catalyse highly enantioselective Diels-Alder reactions. The catalytic species are reasonably robust and can exhibit extreme chiral amplification. S. Kanemasa, Y. Oderaotoshi, S. Sakaguchi, H. Yamamoto, J. Tanaka, E. Wada, D. P. Curran J. Am. Chem. Soc. 1998, 120, 3074.	 A	The above reaction is extensively investigated in all regards ($\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Co}, \mathrm{Cr}$, Ga metal complexes are all studied). All yields and enantioselectivities are excellent in optimised cases (comparable to the illustrated example).	$\begin{aligned} & 96 \%, \text { er }>99: 1 \\ & \text { endo: exo }=97: 3 \end{aligned}$

Bis(dihydroquininyl)anthraquinone			Ligand
The title ligands mediate the regioselective aminohydroxylation of cinnamates to phenyl serines with high enantioselectivity. B. Tao, G. Schlingloff, K. B. Sharpless Tetrahedron Lett. 1998, 39, 2507.	 A Alk ${ }^{*}=$ dihydroquininyl B Alk* $=$ quinidinyl		$\begin{gathered} \mathbf{X}=\mathbf{A}: \\ \\ \\ \mathrm{er}=98 \% \\ =98: 2 \end{gathered}$

Phenyldimethylsilyllithium		Reagent
Toluene- p-sulfonamides of secondary amines and indoles are cleaved by the title reagent in good yield. I. Fleming, J. Frackenpohl, H. Ila J. Chem. Soc., Perkin Trans 1 1998, 1229.	$\mathrm{PhMe}_{2} \mathrm{SiLi}$ A	7 examples (yields $72-91 \%$). Aziridine toluene- p-sulfonamides are opened by \mathbf{A} to give β-silylethyl sulfonamides. Ts = p-toluenesulfonyl

(Trifluoromethyl)trimethylsilane				Reagent
A novel nucleophilic trifluoromethylation of esters with \mathbf{A} is reported. The ester functionality is converted into the trifluoromethylcarbonyl group without formation of double addition products and the reaction is applicable to both enolisable and non-enolisable esters.	Me3SiCF3 A		$\xrightarrow[\substack{\text { TBAF }(2.5 \mathrm{~mol} \%) \\ \text { Pentane, }-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 24 \mathrm{~h} \\ 85 \%}]{\mathbf{A}(1.25 \mathrm{eq})}$	
J. Wiedemann, T. Heiner, G. Mloston, G. K. S. Prakash, G. A. Olah Angew. Chem. Int. Ed. 1998, 37, 820.			8 examples (yields 0, 68-95\%).	

Titanocene Dichloride Reagent		
A 3-step synthesis of indoles is described. Pivotal aryl alkyl dibromide intermediates are realised via regioselective insertion of an olefin into a titanocene benzyne complex. K. Aoki, A. J. Peat, S. L. Buchwald J. Am. Chem. Soc. 1998, 120, 3068.	$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ A	Subsequent annulation with BnNH_{2} under $\mathrm{Pd}(0)$ catalysis, followed by deprotection/ oxidation affords indole products. 10 examples (yields ($3-4$ steps) 18-54\%).

| 2,2'-Azobis isobutyronitrile (AIBN) / Tributyltin Hydride |
| :--- | :--- | :--- |
| Tin(IV) radical enolates formed by the action of
 $\mathrm{Bu}_{3} \mathrm{Sn}^{\circ}$ on α-allyloxy enones undergo facile
 [3,3]-sigmatropic rearrangement.
 E. . Enholm, K. M. Moran, P. E. Whitley, M. A. |
| Battiste J. Am. Chem. Soc. 1998, 120,3807. |

(+)- - -Fluoro-2,10-(3,3-dichlorocamphorsultam)		
The title compound mediates the electrophilic		
asymmetric fluorination of enolates.		
F. A. Davis, P. Zhou, C. K. Murphy, G. Sundarababu, H. Qi, W. Han, R. M. Przeslawski, B.-C. Chen, P. J. Carroll J. Org. Chem. 1998, 63, 2273.	A	(b) $\mathbf{A}(1.5 \mathrm{eq})$

Samarium(II) lodide / Tetrakis(triphenylphosphine) Palladium		
The title reagent pair mediates the ring contraction of methyl 5 -vinylpyranosides to 2 -vinyl cyclopentanols with moderate trans selectivity. J. M. Aurrecoechea, B. López Tetrahedron Lett. 1998, 39, 2857.	Sml2 A $\mathrm{Pd}(\mathrm{PPh} 3) 4$ B	

Manganese / Copper(II) Chloride		Reagent
The title reagent pair mediates the homo- and cross-coupling of alkyl halides in aqueous media. J. Ma, T.-K. Chan Tetrahedron Lett. 1998, 39, 2499.	$\begin{gathered} \mathrm{Mn} \\ \mathbf{A} \\ \mathrm{CuCb}_{2} \\ \mathbf{B} \end{gathered}$	8 examples of homo-coupling (yields $52-100 \%$) and 2 examples of cross-Coupling with an allyl bromide (yields 62, 79\%) are described.

Tributyltin Hydride		
The title reagent mediates the reductive decomplexation of acetylene biscobalthexacarbonyl complexes to form the corresponding cis alkenes.		
S. Hosokawa, M . Isobe Tetrahedron Lett. 1998, 39, 2609.		

Carbomethoxypropionyl Cyanide Reagent		
The title reagent reacts regioselectively with ketone enolates to form 1,3-dicarbonyl compounds. Q. Tang, S. E. Sen Tetrahedron Lett. 1998, 39, 2249.	 A	

1,1,2,2-Tetraphenyldisilane Reagent		
The title reagent participates in the reduction of alkyl bromides, addition to alkenes and alkylation of heterocyclic bases. O. Yamazaki, H. Togo, S. Matsubayashi, M. Yokoyama Tetrahedron Lett. 1998, 39, 1921.	$\mathrm{Ph}_{2} \mathrm{HSi}-\mathrm{SiHPh}_{2}$ A	

Dichloroindium Hydride		Reagent
Dichloroindium hydride mediates the reduction of aldehydes, ketones and alkyl halides. T. Miyai, K. Inoue, M. Yasuda, I. Shibata, A. Baba Tetrahedron Lett. 1998, 39, 1929.	A	16 examples (yields $23-99 \%$) are described. Nitro, cyano and ester groups are unreactive.

