SYNTHESIS ALERTS

Synthesis Alerts is a new monthly feature to help readers of *Synthesis* keep abreast of new reagents, catalysts, ligands, chiral auxiliaries, and protecting groups which have appeared in the recent literature. Emphasis is placed on new developments but established reagents, catalysts etc are also covered if they are used in novel and useful reactions. In each abstract, a specific example of a transformation is given in a concise format designed to aid visual retrieval of information.

Georg Thieme Verlag does not accept responsibility for the accuracy, content, or selection of the data.

([Cu(S,S)-t-Bu-bis-oxazolinyl](H$_2$O)$_2$)(SbF$_6$)$_2$

The title catalyst is one of three related Cu(II)-based Lewis acids which efficiently catalyse the enantioselective addition of a variety of olefins to glyoxylate esters to provide α-hydroxy esters. These catalysts also catalyse enantioselective Diels-Alder and aldol reactions.

((R)-2,10-Dibromo-5H-dinaphtho[2,1-g:1′,2′-i][1,5]dioxacycloundecin-3,6,9(7H)-trione

The title compound is one of a set of three related C$_2$-symmetric ketones which form dioxirane intermediates with oxone which can epoxidise alkenes enantioselectively.

Chiral (Salen)Al(III) complex

The chiral (Salen)Al(III) complex **A** catalyzes the enantioselective addition of HCN to N-allylimines. Catalyst **A** is easily prepared on a large scale and has an indefinite shelf life.

[\((p\text{-Cymene})(\text{Cl})\text{Ru}(m\text{-Cl})_2\text{Ru(\text{Cl})(PCy}_3\text{-CHCHCPh}_2)\)](\text{Catalyst})

The Grubbs metathesis catalyst reacts with \(\text{[(p-cymene)RuCl}_2]_2\) to form bimetallic bridged-chloride ruthenium carbenes which are more active than the Grubbs catalyst in ring opening polymerisation reactions and ring closing metathesis reactions.

Aldolase Antibody 38C2

The title antibody catalyses an asymmetric aldol reaction between hydroxyacetone and a functionalised aldehyde. The process represents the first time a catalytic antibody has been used to decrease the total number of synthetic steps and to increase the enantioselectivity of natural product syntheses.

Cationic allenylidene ruthenium complex

A is utilised as a catalyst for ring closing olefin metathesis.

Methyl(triphenylphosphane)gold(I)

A is an excellent catalyst for the efficient addition of alcohols to alkynes in the presence of a Lewis or Brønsted acid co-catalyst.

Mercury(II) sulfate

The title compound catalyses the rearrangement of 1-alkynyl-2,3-epoxy alcohols affording a stereocontrolled route to 2,3-dihydro-4H-pyran-4-ones.

Tetrakis(triphenylphosphine)palladium(0)

The title compound catalyses the synthesis of enantioenriched homopropargylic alcohols from propargylic mesylates via chiral allenylzinc intermediates.

Catalyst

\[
Pd(PPh_3)_4
\]

\[
\text{OMs}
\]

\[
c\text{-C}_6\text{H}_{11}\text{CHO (0.5 eq)} \quad \text{Et}_2\text{Zn (1.2 eq)}
\]

\[
\text{THF, 0°C} \rightarrow \text{rt, 6 h}
\]

85%, anti:syn = 95:5

er anti = 98:2

11 examples (yields 47-85%, 68:32 ≤ anti:syn ≤ 95:5, %ee anti = 86-96%).

Methyltrioxorhenium (MTO)

The title compound catalyses the facile oxidation of silyl enol ethers with hydrogen peroxide.

Catalyst

\[
\text{MeReO}_3
\]

\[
\text{OSiMe}_3\text{O}
\]

\[
\text{A (0.2 mol%), H}_2\text{O}_2\text{ (2 eq)} \quad \text{pyridine (1 eq)}
\]

\[
\text{MeCN-AcOH (95:5)}
\]

\[
\text{rt, 15 min}
\]

96%

8 examples (yields 60-100%).

Tetracarbonyldi-µ-chlorodirhodium(I)

The title compound is a selective catalyst for the [5 + 2] cycloaddition of vinylcyclopropanes and alkynes.

Catalyst

\[
[Rh(CO)_2\text{Cl}]_2
\]

\[
\text{Ph}
\]

\[
\text{Ph}
\]

\[
\text{A (5 mol%)}
\]

\[
\text{CDCl}_3\text{, 30°C, 14 h}
\]

80%

9 examples (yields 0, 78-89%).

Chiral (acyloxy)borane (CAB)

The modified CAB Lewis acid A gives better syn/anti selectivity than the Keck BINOL/Ti catalyst in additions of crotyltributyltin to aldehydes. However, allylations are more enantioselective with the Keck catalyst. A is formed in situ from the corresponding tartrate ester and BH_3·THF.

Catalyst

\[
\text{OMe}
\]

\[
\text{OMe}
\]

\[
\text{B}
\]

\[
\text{OH}
\]

\[
\text{SnBu}_3
\]

\[
\text{O}
\]

\[
\text{H}
\]

\[
\text{a (1 eq)}\quad \text{–78°C, 10 h}
\]

70%, sym:anti = 92:8

er sym = 97:3

9 examples (yields 42-74%, 78:22 ≤ sym:anti ≤ 98:2, %ee sym = 55-93%).

1,3-Dichlorotetraethyldistannoxane

The title reagent catalyses the highly selective acylation of alcohols.

Catalyst

\[
\text{Cl}
\]

\[
\text{Cl}
\]

\[
\text{Bu}_2\text{Sn}
\]

\[
\text{Cl}
\]

\[
\text{Bu}
\]

\[
\text{Bu}_2\text{Sn}
\]

\[
\text{Bu}
\]

\[
\text{Cl}
\]

\[
\text{H}_2\text{C}═\text{CHOCOPh}
\]

\[
\text{50°C, 40 h}
\]

96%

(1% diester)

17 examples of the acylation of alcohols (yields, 0, 92-99%) and 6 examples of the selective acylation of primary hydroxyls in the presence of secondary hydroxyls (yields 84-99%) are reported.
Chiral Binapthylphosphoramidate

The title Lewis base catalyses the enantioselective ring opening of epoxides with silicon tetrachloride.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>SiCl4 (1.1 eq), A (10 mol%)</th>
<th>CH2Cl2, –78°C, 20 min</th>
<th>87% er = 54:46</th>
<th>5 examples (yields 87-95%, %ee 2-87%).</th>
</tr>
</thead>
</table>

Rhodium(II) octanoate

Rhodium catalysed decomposition of 2-diazo-3-siloxybutenoates containing a chiral auxiliary in the presence of vinyl ethers results in the diastereoselective synthesis of cyclopropanes with high asymmetric induction. Desilylation and ring expansion produces 2,3-dihydrofurans with retention of stereochemistry.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Rh2(OOct)4</th>
<th>A (3 mol%), hexane, Δ, 30 min</th>
<th>64% dr = 86:14</th>
<th>5 examples (yields 43-77%, %de 67-86%) are reported.</th>
</tr>
</thead>
</table>

Hexakis(triphenylphosphine)copper(I) hydride

The title catalyst (Stryker’s reagent) mediates the conjugate reduction of enones and enals with phenylsilane or tributyltin hydride.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>[(Ph3P)CuH]6</th>
<th>A (5 mol%), PhSH3 (1.5 eq)</th>
<th>PhMe, rt, 2 d</th>
<th>96%</th>
<th>11 examples (yields 70-100%) are described.</th>
</tr>
</thead>
</table>

Polymer-supported dibutyltin iodide / sodium borohydride

A polymer-supported organotin hydride generated in situ from the title reagent pair reduces 1-bromoadamantane.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>SnBu2I</th>
<th>A (20 mol%), B (2.5 eq)</th>
<th>AIBN (10 mol%), EtOH, 65°C, 12 h</th>
<th>93%</th>
<th>1 example is reported. When reductions are run at a catalytic level contaminating tin residues are minimal.</th>
</tr>
</thead>
</table>

Dichlorobis(diphenylphosphino)propane Nickel(II)

The title catalyst mediates N-deallylation using trimethylaluminium or diisobutylaluminium hydride.

| Catalyst | (Ph3P)2Cl2Ni | A (4 mol%), DIBAL-H (1.5 eq) | PhMe, rt | 89% | 31 examples of the N-deallylation of amines, amides, sulfonamides and N-heterocycles (yields 38-95%) are reported. |
Hafnium(IV) trifluoromethanesulfonate / trifluoromethanesulfonic acid

The title catalyst system mediates the Friedel-Crafts acylation of benzene, chlorobenzene and fluorobenzene.

9 examples (yields 60-83%) are described.

Chiral Auxiliary

(4S)-4-(2-Naphthyl)oxazolidin-2-one

The title chiral auxiliary and its enantiomer, new Evans auxiliaries analogs, are synthesised from 2-vinylnaphthalene in two steps in high yield and excellent enantiomeric excess. The synthesis involves a unique solution-to-solid Sharpless asymmetric aminohydroxylation process.

63%
er = 99:1

The (4R) enantiomer was synthesised in a similar manner (yield 54%, %ee 93-99%).

Ligand

2,2′-Bis(diphenylphosphinoamino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl (H₈-BDPAB)

The title ligand promotes the Rh-catalysed asymmetric hydrogenation of enamides leading to chiral arylamine derivatives with excellent ee.

7 examples; yields typically 100% and ee ≥ 95%. Other aromatic enamides include C₆H₅, p-CF₃C₆H₄, p-CH₃C₆H₄, p-OClC₆H₄, p-FC₆H₄, m-CH₃C₆H₄. The reaction is insensitive to the electronic features of the arene substituents but ortho-substituted arenes do not react for steric reasons.

Ligand

M-N-Methyl-bis[(R)-1-naphthyl]ethyl]amine

Highly diastereo- and enanto-selective 1,3-dipolar cycloadditions of nitriles are catalysed by a complex derived from the title compound, (S)-BINOL, and Yb(OTf)₃.

8 examples; yields typically >88%, ee 79, 85, 89-96%.
1555
SYNTHESIS
October 1998

1(R,2R)-Bis(trifluoromethanesulfonamido)cyclohexane

The title reagent catalyses the stereoselective addition of functionalized dialkylzincs to 1,2-, 1,3- and 1,4-aminoaldehydes.

![Ligand](image1)

9 examples (yields 42, 74-90%, %ee 24-98%). In addition, 5 examples of 1,2 addition to α,β-unsaturated aminoaldehydes (yields 66-86%, %ee 79-95%) are reported.

N,N-Bis[2-(4,5-dihydrooxazol-2-yl)phenyl]oxalamides

Synthesis of the title ligands and their use in asymmetric catalysis is reported.

![Ligand](image2)

One example of enantioselective epoxidation and 3 examples of enantioselective cobalt-catalyzed Michael addition of malonates to chalcone utilising ligand B are reported (yields 12-17%, %ee = 75-89%).

1(S,3R,4R)-2-Azanorbornylmethanol

A is an efficient ligand for ruthenium-catalysed asymmetric transfer hydrogenation of ketones.

![Ligand](image3)

7 examples (yields 53-98%, %ee 83-97%) are reported. HMB = hexamethylbenzene.

p-Methoxybenzyl trifluoroacetimidate

The title reagent is much more stable than the popular trichloroacetimidate used for the protection of alcohols as their p-methoxybenzyl ethers. Reagent A (bp 120-125°C/0.3 mmHg) can be stored at rt for up to one month at rt.

![Protecting Group](image4)

Acetimidates with ClCF₂C, F(CF₂)₂, F(CF₂)₃, H(CF₂)₄ and H(CF₂)₆ are also reported. The analogous 3,4-dimethoxybenzyl trifluoroacetimidate is also a stable crystalline solid, mp 73-74°C.

2-Naphthylmethyl ethers

2-Naphthylmethyl ethers undergo hydrogenolysis selectively in the presence of benzyl ethers under standard conditions (Pd/C, EtOH). Hydrogenolysis of benzyl ethers is inhibited by 2-methylphenyl ethers.

![Protecting Group](image5)

8 examples; yields 86-97%. Selectivity postulated to arise from the high affinity of the electron-rich naphthalene ring for the palladium surface.
2-Acetyl-4-nitroindan-1,3-dione

The title compound reacts with primary amines to form N-1-(4-nitro-1,3-dioxoindan-2-ylidene)ethyl (Nde) derivatives as stable yellow amorphous solids in good yields. The Nde protecting group is stable towards the reagents commonly employed in solid phase peptide synthesis and its deprotection with 2% hydrazine in DMF can be easily monitored visually.

![Diagram of 2-Acetyl-4-nitroindan-1,3-dione](image)

Di-tert-butylchlorosilane

A novel one-pot selective silylation of the internal hydroxyl group of 1,2-diols is reported.

![Diagram of Di-tert-butylchlorosilane](image)

BOX-Zn-CH₂CH=CH₂

The title compound adds the allyl ligand with high enantioface selectivity to alkynyl ketones.

![Diagram of BOX-Zn-CH₂CH=CH₂](image)

Benzyl triphenylmethyl ether

The title reagent reacts with DDQ to give an O-trityl benzaldehyde carbocation which can be used to deliver an O-trityl protecting group.

![Diagram of Benzyl triphenylmethyl ether](image)

[Bis-1,3-diphenylphosphinopropane]nickel(II) chloride/diisobutylaluminium hydride

The title reagent pair effects the clean and efficient deprotection of allyl ethers. The reaction can also be applied to the deprotection of N-allylamines.

![Diagram of [Bis-1,3-diphenylphosphinopropane]nickel(II) chloride/diisobutylaluminium hydride](image)
N-tert-Butyloxycarbonylmethyl-2-diphenylmethyl-4-phenyloxazolidine

The lithium enolate of the title glycine equivalent undergoes a highly stereoselective aldol reaction with a variety of aldehydes. Removal of the chiral auxiliary produces chiral β-hydroxy-α-amino acids of erythro stereochemistry.

%deg 84–98%.

Reagent

(a) LDA, THF –78°C, 1 h
(b) i-PrCHO –78°C, 1 h

4 steps

85%

5 examples (aldol yields 73–94%, %deg 84–98%).

(Z)-Crotyl trifluorosilane

The crotylation of β-hydroxy α-methyl aldehydes with the title reagent offers an excellent way to install the anti, anti-dipropionate stereotriad.

Reagent

A

7 examples (yields 44-76%, 50:50 ≤ anti, anti : other diastereomers ≤ 96:4).

N,N-di-Boc-N′-triflylguanidine and N,N-di-Cbz-N′-triflylguanidine

The title diprotected triflylguanidines are a new class of guanidinylation reagents.

Reagent

A

11 examples of the guanidinylation of amines, amino acids and peptides (yields 75-100%) are reported.

(E)- and (Z)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-2-butenes

A and B are synthetic equivalents for the 1-(1,3-butadienyl) anion and the 1,1-(1,3-butadienyl) dianion. Deprotonation and reaction with an electrophile gives the corresponding product with stereocchemical retention. Elimination of the products from A or B gives selectively the (E)-butadiene.

Reagent

A

14 examples of the synthesis of (E)-1-substituted-1,3-butadienes (yields 51-88%, E:Z > 98:2) and 3 examples of A or B acting as a dianion equivalent (yields 71-98%) are reported.

N-Acryl-N-allyl-o-tert-butylanilide (A) and N-(o-tert-Butylphenyl)-2-methylmaleimide (B)

Iodine- or Lewis acid-mediated asymmetric Diels-Alder reaction of the axially chiral title compounds with various dienes proceeds with high endo and diastereofacial selectivity.