Fortschr Neurol Psychiatr 2000; 68(6): 278-288
DOI: 10.1055/s-2000-11535
ORIGINALARBEIT
Georg Thieme Verlag Stuttgart · New York

Diabetische somatische Polyneuropathie

Pathogenese, klinische Manifestationsformen und Therapie-KonzepteM. J. Hilz, H. Marthol, B. Neundörfer
  • Neurologische Klinik mit Poliklinik der Universität Erlangen-Nürnberg (Direktor: Prof. Dr. B. Neundörfer)
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Zusammenfassung:

Die diabetische Polyneuropathie ist die häufigste Neuropathie in westlichen Ländern. In Deutschland sind 3,5 bis 4 Mio. Patienten an Diabetes mellitus erkrankt. Bei der Diagnosestellung sollten andere Polyneuropathie-Ursachen ausgeschlossen werden und wenigstens zwei der fünf Diagnosekriterien neuropathische Symptome, neuropathische Defizite, pathologische Nervenleitgeschwindigkeiten, pathologische quantitativ sensible Testung, pathologische quantitativ autonome Untersuchung nachweisbar sein. Bislang ist die Pathophysiologie der diabetischen Polyneuropathie noch nicht völlig geklärt. Zu den verschiedenen pathophysiologischen Konzepten zählen die Sorbitol-Myo-Inositol-Hypothese, nach der in Folge einer Anhäufung von Sorbitol und Fruktose eine Myo-Inositol-Verarmung eintritt, die Hypothese des Mangels an essenziellen Fettsäuren mit geminderter Verfügbarkeit von Gamma-Linolensäure und Prostanoiden, die Peudohypoxie- und Hypoxie-Hypothese, nach der endotheliale und axonale Störungen sowie strukturelle Schäden auf eine Vermehrung des oxidativen Stresses und der freien Radikalproduktion zurückzuführen sind. Wesentlich erscheint auch die Rolle der unter Hyperglykämie anfallenden advanced glycation end products (AGEs). AGEs tragen zu strukturellen Funktionsstörungen und Schäden bei. Erhöhte Spiegel zirkulierender Immunkomplexe und aktivierter T-Lymphozyten sowie der Nachweis von Antikörpern gegen Nervengewebe, z. B. den Vagusnerv oder sympathische Ganglienzellen, unterstützen die Hypothese einer immunvermittelten Neuropathie. Die Verminderung neurotropher Faktoren, wie etwa nerve growth factor, Neurotrophin-3 oder Insulin-like growth factor scheint auch zur Entstehung der diabetischen Neuropathie beizutragen.

Die symmetrisch-distal betonte und vorwiegend sensible Neuropathie ist weitaus häufiger anzutreffen als die symmetrisch-paretische Form oder die asymmetrischen Neuropathien. Die schmerzlose Neuropathie ist gekennzeichnet durch Störungen der Berührungsempfindung, des Lagesinns und des Vibrationsempfindens. Muskeleigenreflexe, insbesondere die Achillessehnenreflexe, sind gemindert oder fehlen. Die schmerzhafte sensible diabetische Neuropathie betrifft vor allem die kleinen Nervenfasern und verursacht eine Störung des Temperaturempfindens sowie Parästhesien. Die proximale, diabetische Amyotrophie entsteht akut oder subakut und verursacht Paresen der Beckengürtelmuskulatur und der vom Nervus femoralis innervierten Oberschenkelmuskulatur. Diabetische Hirnnervenausfälle beginnen oft akut und schmerzhaft. Diabetische Radikulopathien halten sich an das Versorgungsgebiet eines Spinalnerven im Rumpfbereich und verursachen gürtelförmige Schmerzen sowie gegebenenfalls Bauchwandparesen. Die autonome diabetische Polyneuropathie kann gleichzeitig mit oder ohne somatische Neuropathie auftreten.

Wichtigstes Therapieziel ist eine weitgehende Normalisierung der Blutglukosespiegel, die Reduktion von Übergewicht und erhöhten Blutfettwerten. Zur symptomatischen Therapie steht Alpha-Liponsäure zur Verfügung. Das Antioxidanz scheint neuropathische Symptome zu verbessern.

Aldosereduktasehemmer könnten die Sorbitol- und Fruktose-Produktion mindern und Myo-Inositolspiegel wieder erhöhen. Derzeit stehen jedoch keine Aldosereduktasehemmer in Europa zur Verfügung. Nachtkerzenöl, das einen hohen Gehalt an Gammalinolensäure hat, könnte nach Studienergebnissen Nervenleitgeschwindigkeiten, Temperaturempfinden, Muskelkraft, Muskeleigenreflexe und sensible Funktionen wieder bessern. Die Substitution von nerve growth factor schien in Pilotstudien vielversprechend zu sein, ergab jedoch in einer großen Multizenterstudie keinen Wirksamkeitsnachweis.

Zur symptomatischen Schmerzbehandlung können trizyklische Antidepressiva, selektive Serotonin-Wiederaufnahmehemmer, Antikonvulsiva wie Carbamazepin, Gabapentin, oder Lamotrigin sowie Antiarrhythmika wie z. B. Mexiletin eingesetzt werden. Topisches Capsaicin kann neuropathische Schmerzen lindern, verursacht zunächst aber lokale Reizerscheinungen und Hyperalgesie. Vasoaktive Substanzen konnten bislang keinen sicheren Nutzen für die Behandlung der schmerzhaften diabetischen Neuropathie aufzeigen. Krankengymnastik und sorgfältige Fußpflege sind von größter Bedeutung und helfen, Sekundärkomplikationen wie Fußulzerationen oder schließlich Amputationen zu vermeiden.

Diabetic Somatic Neuropathy - Pathogenesis, Clinical Manifestations and Therapeutical Concepts:

Diabetic polyneuropathy is the most frequent neuropathy in western countries. In Germany, there are 3.5 to 4 million diabetic patients. Diagnosis should rule out other polyneuropathies and assess two out of the five diagnostic criteria: neuropathic symptoms, neuropathic deficits, pathological nerve conduction studies, pathological quantitative sensory testing and pathological quantitative autonomic testing. So far, the pathophysiology of diabetic neuropathy remains to be fully understood. Among the various pathophysiological concepts are the Sorbitol-Myo-Inositol hypothesis attributing Myo-Inositol depletion to the accumulation of Sorbitol and Fructose, the concept of deficiency of essential fatty acids with reduced availability of gamma-linolenic-acid and prostanoids, the pseudohypoxia- and hypoxia-hypothesis attributing endothelial and axonal dysfunction and structural lesions to increased oxidative stress and free radical production. Obviously, the hyperglycemia induced generation of advanced glycation end products (AGEs) also contributes to structural dysfunctions and lesions. Elevated levels of circulating immune complexes and activated T-lymphocytes as well the identification of autoantibodies against vagus nerve or sympathetic ganglia support the concept of an immune mediated neuropathy. The reduction of neurotrophic factors such as nerve growth factor, neurotrophin-3 or insulin-like growth factors also seems to further diabetic neuropathy.

The symmetrical, distally pronounced and predominantly sensory neuropathy is far more frequent than the symmetrical neuropathy with predominant motor weakness or the asymmetrical neuropathy. The painless neuropathy manifests with impaired light touch sensation, position sense, vibratory perception and diminished or absent ankle deep tendon reflexes. The painful sensory diabetic neuropathy primarily affects small nerve fibers and accounts for decreased temperature perception and paresthesias. The proximal, diabetic amyotrophy evolves subacutely or acutely, induces motor weakness of the proximal thigh and buttock muscles and is painful. Cranial nerve III-neuropathy is also painful and has an acute onset. Truncal radiculopathy follows the distribution of truncal roots and frequently causes intense pain. Autonomic neuropathy occurs with and without somatic neuropathy. The most important therapy is to attempt optimal blood glucose control, to reduce body weight and hyperlipidemia. Symptomatic therapy includes alpha-lipoic acid treatment, as the antioxidant seems to improve neuropathic symptoms. Aldose reductase inhibitors might reduce sorbitol and fructose production and normalize myo-inositol levels. However, there are no aldose reductase inhibitors available in Europe as yet. Evening primrose oil, containing gamma-linolenic acid, might improve nerve conduction velocities, temperature perception, muscle strength, tendon reflexes and sensory function. Substitution of nerve growth factor showed promising results in pilot studies but failed in a large-scale multicenter study. Symptomatic pain treatment can be achieved with tricyclic antidepressants, selective serotonin reuptake inhibitors, anticonvulsants such as carbamazepine, gabapentin or lamotrigine, or antiarrhythmic drugs such as mexiletine. Topical capsaicin application should reduce neuropathic pain but also induces local discomfort in the beginning of therapy. Vasoactive substances, so far have not proven to be of major benefit in diabetic neuropathy.

Physical therapy and thorough footcare are of primary importance and allow prevention of secondary complications such as foot amputations.

Literatur

  • 1 Hauner H. Verbreitung des Diabetes mellitus in Deutschland.  Dtsch Med Wochenschr. 1998;  123 777-782
  • 2 Pirart J. Diabetes mellitus and its degenerative complications: A prospective study of 4400 patients observed between 1947 - 1973.  Diabetes Care. 1978 (I);  168 - 188 252-263
  • 3 Ziegler D, Gries F A, Spuler M, Lessmann F. The epidemiology of diabetic neuropathy. Diabetic Cardiovascular Autonomic Neuropathy Multicenter Study Group.  J Diabetes Complications. 1992;  6 49-57
  • 4 Ziegler D, Gries F A. Klassifikation, Epidemiologie, Prognose und sozialmedizinische Bedeutung.  Dt Ärztebl. 1996;  93(A) 680
  • 5 Neundörfer B. Diabetische Polyneuropathie.  Nervenheilkunde. 1998;  17 420-423
  • 6 Hilz M J, Stemper B. Staging der diabetischen Neuropathie.  Nervenheilkunde. 1998;  17 424-429
  • 7 Dyck P J, Kratz K M, Karnes J L. et al . The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study.  Neurology. 1993;  43 817-824
  • 8 Neundörfer B. Polyneuropathien: Standards.  Nervenheilkunde. 1995;  14 164-174
  • 9 Dyck P J, Kratz K M, Lehmann K A. et al . The Rochester Diabetic Neuropathy Study: Design, criteria for types of neuropathy, selection bias, and reproducibility of neuropathic tests.  Neurology. 1991;  41 799-807
  • 10 Greene D A, Lattimer S A, Sima A A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications.  N Engl J Med. 1987;  316 599-606
  • 11 Greene D A, Sima A F, Pfeifer M A, Albers J W. Diabetic neuropathy.  Annu Rev Med. 1990;  41 303-317
  • 12 Lee T S, Saltsman K A, Ohashi H, King G L. Activation of protein kinase C elevated glucose concentration: proposal for a mechanism in the development of diabetic vascular complications.  Proc Natl Acad Sci U S A. 1989;  86 5141-5145
  • 13 Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation.  Nature. 1988;  334 661-665
  • 14 Williamson J R, Chang K, Frangos M. et al . Hyperglycemic pseudohypoxia and diabetic complications.  Diabetes. 1993;  42 801-813
  • 15 Cotter M A, Cameron N E. The aetiopathogenesis of diabetic neuropathy: metabolic theories. In: Boulton AJM, (ed.). Diabetic neuropathy Carnforth: Marius Press 1997: 97-119
  • 16 Cameron N E, Cotter M A. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy.  Diabetes. 1997;  46 S31-37
  • 17 Cameron N E, Cotter M A, Hohmann T C. Interactions between essential fatty acid, prostanoid, polyol pathway and nitric oxide mechanisms in the neurovascular deficit of diabetic rats.  Diabetologica. 1996;  39 172-182
  • 18 Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.  N Engl J Med. 1988;  318 1315-1321
  • 19 Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus.  Proc Natl Acad Sci USA. 1981;  78 5190-5192
  • 20 Yan S D, Schmidt A M, Anderson G M. et al . Enhanced cellular oxidants stress by the interaction of advanced glycation end products with their receptors/binding proteins.  J Biol Chem. 1994;  269 9889-9897
  • 21 Guy R J, Richards F, Edmonds M E, Watkins P J. Diabetic autonomic neuropathy and iritis: an association suggesting an immunological cause.  Br Med J (Clin Res Ed). 1984;  289 343-345
  • 22 Gilbey S G, Guy R J, Jones H, Vergani D, Watkins P J. Diabetes and autonomic neuropathy: an immunological association?.  Diabet Med. 1986;  3 241-245
  • 23 Gilbey S G, Hussain M J, Watkins P J, Vergani D. Cell-mediated immunity and symptomatic diabetic autonomic neuropathy.  Diabetic Med. 1988;  5 845-848
  • 24 Rabinowe S L. Immunology of diabetic and polyglandular neuropathy.  Diabetes Metab Rev. 1990;  6 169-188
  • 25 Muhr-Becker D, Ziegler A G, Druschky A. et al . Evidence for specific autoimmunity against sympathetic and parasympathetic nervous tissues in Type 1 diabetes mellitus and the relation to cardiac autonomic dysfunction.  Diabet Med. 1998;  15 467-472
  • 26 Said G, Elgrably F, Lacroix C. et al . Painful proximal diabetic neuropathy: inflammatory nerve lesions and spontaneous favorable outcome.  Ann Neurol. 1997;  41 762-770
  • 27 Younger D S, Rosoklija G, Hays A P. et al . Diabetic peripheral neuropathy: a clinicopathologic and immunohistochemical analysis of sural nerve biopsies.  Muscle Nerve. 1996;  19 722-727
  • 28 Said G, Goulon-Goeau C, Lacroix C, Moulonguet A. Nerve biopsy findings in different patterns of proximal diabetic neuropathy.  Ann Neurol. 1994;  35 559-569
  • 29 Tomlinson D R, Fernyhough P, Diemel L T. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors.  Diabetes. 1997;  46 S43-49
  • 30 Vogel K S. Development of trophic interactions in the vertebrate peripheral nervous system.  Mol Neurobiol. 1993;  7 363-382
  • 31 Faradji V, Sotelo J. Low serum levels of nerve growth factor in diabetic neuropathy.  Acta Neurol Scand. 1990;  81 402-406
  • 32 Ishii D N. Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy.  Brain Res Brain Res Rev. 1995;  20 47-67
  • 33 Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut R E, Sinicropi D V. The role of endogenous nerve growth factor in human diabetic neuropathy.  Nat Med. 1996;  2 703-707
  • 34 Giannini C, Dyck J P. Pathologic Alterations in Human Diabetic Polyneuropathy. In: Dyck PJ, Thomas PK, eds. Diabetic Neuropathy. 2 ed Philadelphia: WB Saunders 1998: 279-295
  • 35 Fagerberg S E. Diabetic neuropathy. A clinical and histological study on the significance of vascular affections.  Acta Med Scand. 1959;  164 1-99
  • 36 Vital C, Le Blanc M, Vallat J M. et al . Ultrastructural study of pheripheral nerve in 16 diabetics without neuropathy: Comparisons with 16 diabetic neuropathies and 16 non-diabetic neuropathies.  Acta Neuropathol. 1974;  30 63-72
  • 37 Bergstrand A, Bucht H. Electron microscopic investigations in the glomerular lesions in diabetic mellitus.  Lab Invest. 1957;  6 293-300
  • 38 Farquhar M G, Hopper J, Moon H D. Diabetic glomerulosclerosis: Electron and light microscopic studies.  Am J Pathol. 1959;  35 721-753
  • 39 Toussaint D, Dustin P. Electron microscopy of normal and diabetic retinal capillaries.  Arch Ophthalmol. 1963;  70 96-108
  • 40 Dachs S, Churg J, Mautner W, Grisham E. Diabetic nephropathy.  Am J Pathol. 1964;  44 155-161
  • 41 Friederici H HR, Tucker W R, Schwartz T B. Observations on small blood vessels of skin in the normal and in diabetic patients.  Diabetes. 1966;  15 233-250
  • 42 Yodaiken R E, Seftel H C, Rubenstein A N. Ultrastructure of dermal capillaries of Africans in South Africa.  Diabetes. 1967;  16 191
  • 43 Timperley W R, Boulton A J, Davies-Jones G A, Jarratt J A, Ward J D. Small vessel disease in progressive diabetic neuropathy associated with good metabolic control.  J Clin Pathol. 1985;  38 1030-1038
  • 44 Dyck P J, Hansen S, Karnes J. et al . Capillary number and percentage closed in human diabetic sural nerve.  Proc Natl Acad Sci U S A. 1985;  82 2513-2517
  • 45 Timperley W R, Ward J D, Preston F E, Duckworth T, O'Mally B C. Clinical and historical studies in diabetic neuropathy: A reassessment of vascular factors in relation to vascular coagulation.  Diabetologia. 1976;  12 237-243
  • 46 Malik R A, Newrick P G, Sharma A K. et al . Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy.  Diabetologia. 1989;  32 92-102
  • 47 Williams E, Timperley W R, Ward J D, Duckworth T. Electron microscopic studies of vessels in diabetic peripheral neuropathy.  J Clin Pathol. 1980;  33 462-470
  • 48 Johnson P C, Doll S C, Cromey D W. Pathogenesis of diabetic neuropathy.  Ann Neurol. 1986;  19 450-457
  • 49 Powell H C, Rosoff J, Myers R R. Microangiopathy in human diabetic neuropathy.  Acta Neuropathol. 1985;  68 295-305
  • 50 Sima A A, Nathaniel V, Prashar A, Bril V, Greene D A. Endoneurial microvessels in human diabetic neuropathy. Endothelial cell dysjunction and lack of treatment effect by aldose reductase inhibitor.  Diabetes. 1991;  40 1090-1099
  • 51 Giannini C, Dyck P J. Ultrastructural morphometric features of human sural nerve endoneurial microvessels.  J Neuropathol Exp Neurol. 1993;  52 361-369
  • 52 Giannini C, Dyck P J. Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus.  Ann Neurol. 1994;  36 408-415
  • 53 Yasuda H, Dyck P J. Abnormalities of endoneurial microvessels and sural nerve pathology in diabetic neuropathy.  Neurology. 1987;  37 20-28
  • 54 Neundörfer B. Diabetische Polyneuropathie sicher diagnostizieren.  Therapiewoche. 1996;  11 576-581
  • 55 Neundörfer B, Claus D, Luft D. Klinik und Therapie der sensomotorischen diabetischen Polyneuropathie.  Dt Ärztebl. 1996;  93(A) 1529-1532
  • 56 Thomas P K, Tomlinson F R. Diabetic and Hypoglycemic Neuropathy. In: Dyck PJ, Thomas PK, eds. Peripheral Neuropathy Philadelphia: Saunders 1993: 1219-1250 vol 2
  • 57 Zorilla E, Kozak G B. Ophthalmoplegia in Diabetes mellitus.  Ann Intern Med. 1967;  67 968-972
  • 58 Schulz A. Brennende Schmerzen an Rumpf und Oberschenkel mit Bauchdeckenparesen.  Dtsch Med Wochenschr. 1972;  97 1568-1569
  • 59 Raff M C, Asbury A K. Ischemic Mononeuropathy and mononeuropathy multiplex in diabetes mellitus.  New Engl J Med. 1968;  279 17-21
  • 60 Stemper B, Hilz M J. Autonome diabetische Neuropathie: kardiale und peripher-autonome Befunde.  Nervenheilkunde. 1998;  17 437-443
  • 61 Hilz M J, Dütsch M, Neundörfer B. Autonome Störungen bei Polyneuropathien.  Med Klin. 1998;  93 533-540
  • 62 Ziegler D. Therapie der peripheren diabetischen Neuropathie.  Diab Stoffw. 1998;  7 103-113
  • 63 The Diabetes Control and Complications Trial Research Group . The effect of intensive diabetes therapy on the development and progression of neuropathy.  Ann Intern Med. 1995;  122 561-568
  • 64 Amthor K F, Dahl-Jorgensen K, Berg T J. et al . The effect of 8 years of strict glycaemic control on peripheral nerve function in IDDM patients: the Oslo Study.  Diabetologia. 1994;  37 579-584
  • 65 Reichard P, Pihl M, Rosenqvist U, Sule J. Complications in IDDM are caused by elevated blood glucose level: the Stockholm Diabetes Intervention Study (SDIS) at 10-year follow up.  Diabetologia. 1996;  39 1483-1488
  • 66 Oskarsson P, Ljunggren J G, Lins P E. Efficacy and safety of mexiletine in the treatment of painful diabetic neuropathy. The Mexiletine Study Group.  Diabetes Care. 1997;  20 1594-1597
  • 67 Ziegler D, Dannehl K, Wiefels K, Gries F A. Differential effects of near-normoglycaemia for 4 years on somatic nerve dysfunction and heart rate variation in type 1 diabetic patients.  Diabet Med. 1992;  9 622-629
  • 68 Ziegler D. Diagnostik und Therapie der diabetischen Neuropathie.  Ther Umsch. 1996;  53 948-957
  • 69 Hilsted J, Low P A. Diabetic Autonomic Neuropathy. In: Low PA, ed. Clinical Autonomic Disorders. 2nd ed Philadelphia: Lippincott-Raven Publishers 1997: 487-507
  • 70 Thomas P K. Mechanisms and Treatment of Pain. In: Dyck PJ, Thomas PK, eds. Diabetic Neuropathy. 2 ed Philadelphia: W.B. Saunders Company 1998: 387-397
  • 71 The Diabetes Control and Complications Trial Research Group . The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.  N Engl J Med. 1993;  329 977-986
  • 72 American Diabetes Association . Standards of medical care for patients with diabetes mellitus.  Diabetes Care. 1999;  22 S32-S42
  • 73 American Diabetes Association . Implications of the Diabetes Control and Complications Trial.  Diabetes Care. 1993;  16 1517-1520
  • 74 American Diabetes Association . Nutritional recommendations and principles for individuals with diabetes mellitus: 1986.  Diabetes Care. 1987;  10 126-132
  • 75 American Diabetes Association . Management of dyslipidemia in adults with diabetes.  Diabetes Care. 1998;  21 179-182
  • 76 Weir G C, Nathan D M, Singer D E. Standards of care for diabetes.  Diabetes Care. 1994;  17 1514-1522
  • 77 Cameron N E, Cotter M A. The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications.  Diabetes Metab Rev. 1994;  10 189-224
  • 78 Low P A, Nickander K K, Scionti L. Role of Hypoxia, Oxidative Stress, and Excitatory Neurotoxins in Diabetic Neuropathy. In: Dyck PJ, Thomas PK, eds. Diabetic Neuropathy. 2 ed Philadelphia: W. B. Saunders Company 1998: 317-329
  • 79 Packer L, Witt E H, Tritschler H J. alpha-Lipoic acid as a biological antioxidant.  Free Radic Biol Med. 1995;  19 227-250
  • 80 Busse E, Zimmer G, Schopohl B, Kornhuber B. Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivo.  Arzneimittelforschung. 1992;  42 829-831
  • 81 Murase K, Hattori A, Kohno M, Hayashi K. Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes.  Biochem Mol Biol Int. 1993;  30 615-621
  • 82 Dimpfel W, Spuler M, Pierau F K, Ulrich H. Thioctic acid induces dose-dependent sprouting of neurites in cultured rat neuroblastoma cells.  Dev Pharmacol Ther. 1990;  14 193-199
  • 83 Nagamatsu M, Nickander K K, Schmelzer J D. et al . Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy.  Diabetes Care. 1995;  18 1160-1167
  • 84 Ziegler D, Hanefeld M, Ruhnau K J. et al . Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study).  Diabetologia. 1995;  38 1425-1433
  • 85 Ziegler D, Schatz H, Conrad F. et al . Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie.  Diabetes Care. 1997;  20 369-373
  • 86 Reljanovic M, Reichel G, Rett K. et al . Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy.  Free Radic Res. Sep 1999;  31 171-179
  • 87 Ziegler D, Hanefeld M, Ruhnau K J. et al . Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study) ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy.  Diabetes Care. Aug 1999;  22 1296-1301
  • 88 Tomlinson D R. Role of Aldose Reductase Inhibitors in the Treatment of Diabetic Polyneuropathy. In: Dyck PJ, Thomas PK, eds. Diabetic Neuropathy. 2 ed Philadelphia: W. B. Saunders Company 1998: 330-340
  • 89 Dvornik E, Simard-Duquesne N, Krami M. et al . Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor.  Science. 1973;  182 1146-1148
  • 90 Greene D A, De Jesus Jr P V, Winegrad A I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes.  J Clin Invest. 1975;  55 1326-1336
  • 91 Arendrup K, Gregersen G, Hawley J, Hawthorne J N. High-dose dietary myo-inositol supplementation does not alter the ischaemia phenomenon in human diabetics.  Acta Neurol Scand. 1989;  80 99-102
  • 92 Julu P OO. Essential fatty acids prevent slowed nerve conduction velocity in streptozotocin diabetic rats.  J Diabetes Complications. 1988;  2 185
  • 93 Cameron N E, Cotter M A. Role of Linolenic Acid in Diabetic Polyneuropathy. In: Dyck PJ, Thomas PK, eds. Diabetic Neuropathy. 2 ed Philadelphia: W. B. Saunders 1998: 359-367
  • 94 Holman R T, Johnson S B, Gerrard J M. et al . Arachidonic acid deficiency in streptozotocin-induced diabetes.  Proc Natl Acad Sci USA. 1983;  80 2375-2379
  • 95 Greene D A, Sima A AF, Stevens M J. Complications: Neuropathy, pathogenetic considerations.  Diabetes Care. 1992;  15 1902
  • 96 Apfel S C, Kessler J A, Adornato B T. et al . Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group.  Neurology. 1998;  51 695-702
  • 97 Hayakawa K, Sobue G, Itoh T, Mitsuma T. Nerve growth factor prevents neurotoxic effects of cisplatin, vincristine and taxol, on adult rat sympathetic ganglion explants in vitro.  Life Sci. 1994;  55 519-529
  • 98 Apfel S C, Kessler J A. Neurotrophic factors in the treatment of peripheral neuropathy.  Ciba Found Symp. 1996;  196 98-108
  • 99 Levi-Montalcini R. The nerve growth factor-target cells interaction: a model system for the study of directed axonal growth and regeneration. In: Huner B, Perez-Polo JR, Hashim GA, Stella AM, eds. Nervous system regeneration. Proceedings of an International Symposium, Satellite Meetings of International Society for Neurochemistry. Catania, Italy New York: Alan R. Liss, Inc. 1983
  • 100 Campenot R B. Development of sympathetic neurons in compartmentalized cultures. I1 Local control of neurite growth by nerve growth factor.  Dev Biol. 1982;  93 1-12
  • 101 Hoyle G W, Mercer E H, Palmiter R D, Brinster R L. Expression of NGF in sympathetic neurons leads to excessive axon outgrowth from ganglia but decreased terminal innervation within tissues.  Neuron. 1993;  10 1019-1034
  • 102 Zettler C, Head R J, Rush R A. Chronic nerve growth factor treatment of normotensive rats.  Brain Res. 1991;  538 251-262
  • 103 Diamond J, Coughlin M, Macintyre L. et al . Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats.  Proc Natl Acad Sci USA. 1987;  84 6596-6600
  • 104 Snider W D. Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals.  J Neurosci. 1988;  8 2628-2634
  • 105 Kessler J A, Black I B. The effects of nerve growth factor (NGF) and antiserum to NGF on the development of embryonic sympathetic neurons in vivo.  Brain Res. 1980;  189 157-168
  • 106 Kessler J A, Black I B. Nerve growth factor stimulates the development of substance P in sensory ganglia.  Proc Natl Acad Sci U S A. 1980;  77 649-652
  • 107 Kessler J A, Black I B. Similarities in development of substance P and somatostatin in peripheral sensory neurons: effects of capsaicin and nerve growth factor.  Proc Natl Acid Sci U S A. 1981;  78 4644-4647
  • 108 Lindsay R M, Harmar A J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons.  Nature. 1989;  337 362-364
  • 109 Thoenen H, Angeletti P U, Levi-Montalcini R, Kettler R. Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine- -hydroxylase in the rat superior cervical ganglia.  Proc Natl Acad Sci USA. 1971;  68 1598-1602
  • 110 Bradshaw R A. Nerve growth factor.  Annu Rev Biochem. 1978;  47 191-216
  • 111 Thoenen H, Barde Y A. Physiology of nerve growth factor.  Physiol Rev. 1980;  60 1284-1335
  • 112 Levi-Montalcini R. The nerve growth factor 35 years later.  Science. 1987;  237 1154-1162
  • 113 Rush R A, Mayo R, Zettler C. The regulation of nerve growth factor synthesis and delivery to peripheral neurons.  Pharmacol Ther. 1995;  65 93-123
  • 114 Campenot R B. NGF and the local control of nerve terminal growth.  J Neurobiol. 1994;  25 599-611
  • 115 Degenhardt T P, Fu M X, Voss E. et al . Aminoguanidine inhibits albuminuria, but not the formation of advanced glycation end-products in skin collagen of diabetic rats.  Diabetes Res Clin Pract. 1999;  43 81-89
  • 116 Piercy V, Toseland C D, Turner N C. Potential benefit of inhibitors of advanced glycation end products in the progression of type II diabetes: a study with aminoguanidine in C57/BLKsJ diabetic mice.  Metabolism. 1998;  47 1477-1480
  • 117 Friedman E A, Distant D A, Fleishhacker J F, Boyd T A, Cartwright K. Aminoguanidine prolongs survival in azotemic-induced diabetic rats.  Am J Kidney Dis. 1997;  30 253-259
  • 118 Chibber R, Molinatti P A, Wong J S. et al . The effect of aminoguanidine and tolrestat on glucose toxicity in bovine retinal capillary pericytes.  Diabetes. 1994;  43 758-763
  • 119 Cohen S M, Mathews T. Pentoxifylline in the treatment of distal diabetic neuropathy.  Angiology. 1991;  42 741-746
  • 120 Zeigler D, Lynch S A, Muir J. Transdermal clonidine versus placebo in painful diabetic neuropathy.  Pain. 1992;  43 403-408
  • 121 Neundörfer B. Neuropathic Pain - Especially in Polyneuropathies.  Neurology, Psychiatry and Brain Res. 1996;  4 129-134
  • 122 Gomez-Perez F J, Rull J A, Dies H, Rodriquez-Rivera J G, Gonzalez-Barranco J, Lozano-Castaneda O. Nortriptyline and fluphenazine in the symptomatic treatment of diabetic neuropathy. A double-blind cross-over study.  Pain. 1985;  23 395-400
  • 123 Max M B, Culnane M, Schafer S C. et al . Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood.  Neurology. 1987;  37 589-596
  • 124 Max M B, Lynch S A, Muir J, Shoaf S E, Smoller B, Dubner R. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy.  N Engl J Med. 1992;  326 1250-1256
  • 125 Sindrup S H, Bjerre U, Dejgaard A. et al . The selective serotonin reuptake inhibitor citalopram relieves the symptoms of diabetic neuropathy.  Clin Pharmacol Ther. 1992;  52 547-552
  • 126 Botney M, Fields H L. Amitriptyline potentiates morphine analgesia by a direct action on the central nervous system.  Ann Neurol. 1983;  13 160-164
  • 127 McQuay H J, Carroll D, Glynn C J. Dose-response for analgesic effect of amitriptyline in chronic pain.  Anaesthesia. 1993;  48 281-285
  • 128 McQuay H J, Moore R A. Antidepressants and chronic pain.  Bmj. 1997;  314 763-764
  • 129 McQuay H, Carroll D, Jadad A R, Wiffen P, Moore A. Anticonvulsant drugs for management of pain: a systematic review.  Bmj. 1995;  311 1047-1052
  • 130 Galer B S. Neuropathic pain of peripheral origin: Advances in pharmacologic treatment.  Neurology. 1996;  45 S17
  • 131 Backonja M, Beydoun A, Edwards K R. et al . Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial.  JAMA. 1998 Dec 2;  280 1831-1836
  • 132 Harbison J, Dennehy F, Keating D. Lamotrigine for pain with hyperalgesia.  Ir Med J. 1997;  90 56
  • 133 McQuay H J. Opioid use in chronic pain.  Acta Anaesthesiol Scand. 1997;  41 175-183
  • 134 Harati Y, Gooch C, Swenson M. et al . The TPSDN study group: A double-blind placebo-controlled trial of tramadol for the pain of diabetic peripheral neuropathy.  J Peripher Nerv Syst. 1997;  2 270
  • 135 Schaumburg H, Kaplan J, Windebank A. et al . Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome.  N Engl J Med. 1983;  309 445-448
  • 136 Loew D. Pharmacokinetics of thiamine derivatives especially of benfotiamine.  Int J Clin Pharmacol Ther. 1996;  34 47-50
  • 137 Haupt E, Ledermann H, Köpcke W. Benfotiamine on treatment of diabetic polyneuropathy.  J Peripher Nerv Syst. 1997;  2 270
  • 138 Gallai V, Mazzotta G, Montesi S, Sarchielli P, Del Gatto F. Effects of uridine in the treatment of diabetic neuropathy: an electrophysiological study.  Acta Neurol Scand. 1992;  86 3-7
  • 139 Cohen K L, Harris S. Efficacy and safety of nonsteroidal anti-inflammatory drugs in the therapy of diabetic neuropathy.  Arch Intern Med. 1987;  147 1442-1444
  • 140 van der Sloot P, Mizisin A, Zochodne D. Sulindac in established experimental diabetes: a follow-up study.  Can J Neurol Sci. 1995;  22 198-201
  • 141 Forst T, Pfützner A, Ayric H, Ambrosch A, Lehnert H, Küstner E. Die transkutane elektrische Nervenstimulation in der Therapie der symptomatischen somatosensorischen diabetischen Polyneuropathie.  Diab Stoffw. 1996;  5 203-208
  • 142 Krendel D A, Costigan D A, Hopkins L C. Successful treatment of neuropathies in patients with diabetes mellitus.  Arch Neurol. 1995;  52 1053-1061
  • 143 Krendel D A. Immunotherapy of neuropathies in patients with diabetes mellitus requires closer scrutiny (in reply).  Arch Neurol. 1996;  53 591-592
  • 144 Dyck P J, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review.  J Neuropathol Exp Neurol. 1996;  55 1181-1193
  • 145 Masuhr K F, Neumann M. Neurologie. Stuttgart: Hippokrates-Verl. 1989

Prof. Dr M J Hilz

Neurologische Klinik mit Poliklinikder Universität Erlangen-Nürnberg

Schwabachanlage 691054 Erlangen

    >