Z Gastroenterol 2000; 38(8): 615-622
DOI: 10.1055/s-2000-7511
Originalarbeiten
© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Prestimulation of monocytes by the cytokines GM-CSF or IL- 2 enhances the antibody dependent cellular cytotoxicity of monoclonal antibody 17-1A[1]

D. Flieger, U. Spengler, I. Beier, T. Sauerbruch, I. G. H. Schmidt-Wolf
  • Medizinische Klinik und Poliklinik I, Allgemeine Innere Medizin, Universität Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany
Further Information

Publication History

27.1.2000

5.5.2000

Publication Date:
31 December 2000 (online)

Summary

Previously, we have shown that the cytokines ­IFN-α, IFN-γ and IL- 2 significantly enhance the antibody dependent cellular cytotoxicity (ADCC) exerted by the monoclonal antibody (mAb) 17-1A which recognizes the tumor ­associated antigen EpCAM. ADCC was assessed by a new flow cytometric cytotoxicity assay using the PKH2 labeled colorectal tumor cell line HT29 as target cells and peripheral blood mononuclear cells as effectors. Monocytes are assumed to be one of the major effectors for ADCC. However, isolated monocytes have a rather low ADCC capacity while addition of CD4+ lymphocytes optimizes ADCC. Since such an interaction between immune cells may act through cytokines we investigated whether a seven-day-prestimulation of monocytes by the cytokines M-CSF, GM-CSF, IFN-γ, IFN-α and IL- 2 enhances ADCC. Thereafter, we added for three days IL- 2 and IFN-α with or without the mAb 17-1A for terminal activation of monocytes. Interestingly, GM-CSF which was ineffective in terminal activation, significantly enhanced ADCC of monocytes when it was used for prestimulation. Similar results were obtained with IL- 2. IFN-γ and M-CSF were also active but less than GM-CSF. Astonishingly, IFN-γ and IFN-α prestimulation of monocytes suppressed the enhancement of ADCC exerted by GM-CSF and IL- 2, respectively. Our experiments suggest that the timing of cytokine application is critical for the induction of optimal ADCC. Subcutaneous pretreatment with GM-CSF or IL- 2 followed by the combination of IL- 2/IFN-α/17-1A should be evaluated in a phase I clinical trial in patients with colorectal cancer.

Steigerung der antikörperabhängigen Zellzytotoxizität (ADCC) des monoklonalen Antikörpers 17-1A durch Vorstimulation von Monozyten mit GM-CSF oder IL- 2

In Vorversuchen haben wir gezeigt, dass die Zytokine IFN-α, IFN-γ und IL- 2 die antikörpervermittelte Zytotoxizität (ADCC) des monoklonalen Antikörpers 17-1A, der das tumorassoziierte Antigen EpCAM auf der Oberfläche von kolorektalen Tumorzellen erkennt, signifikant steigern. Die ADCC wurde mittels eines neu entwickelten durchflusszytometrischen Zytotoxi­zitätstests bestimmt, wobei als Zielzellen die kolorektale Tumorzelllinie HT29 eingesetzt wurde. Monozyten sind eine der wichtigsten Effektorzellpopulationen, die ADCC ausüben. Diese Zellen zeigen aber nach Magnetseparation eine geringe ADCC, die erst nach Zugabe von CD4+ Lymphozyten optimal ist. Da durch Zellinteraktionen eine Produktion von Zytokinen stattfindet, haben wir hier untersucht, ob eine Monozytenvorstimulation mit den Zytokinen M-CSF, GM-CSF, IFN-γ, IFN-α und IL- 2 über 7 Tage zu einer Steigerung der ADCC führt. Da­nach haben wir zur terminalen Aktivierung der Monozyten IFN-α und IL- 2 für 3 weitere Tage gegeben. GM-CSF, welches in der terminalen Aktivierung zu keiner Steigerung der ADCC führte, erwies sich in der Vorstimulation als potenter Aktivator der ADCC. Auch IL- 2 erwies sich als potenter Stimulator der ADCC, während IFN-γ und M-CSF nur eine mäßige Aktivität zeigten. Erstaunlicherweise supprimierten IFN-γ und IFN-α die Steigerung der ADCC durch GM-CSF und­ IL- 2. Unsere Unter­suchungen zeigen, dass die zeitliche Abfolge der Gabe von Zytokinen eine große Rolle für eine optimale ADCC spielt. In der Klinik sollte die Sequenz einer subkutanen Behandlung mit GM-CSF oder IL- 2 und anschließender Gabe von IFN-α/IL- 2 und 17-1A in Phase-I-Studien bei Patienten mit kolorektalem Karzinom überprüft werden.

1 Flieger D et al. Influence of cytokines, monoclonal antibodies and chemotherapeutic drugs on EpCAM and LewisY antigen expression (submitted).

References

  • 1 Göttlinger H G, Funke I, Johnson J P, Gokel J M, Riethmüller G. The epithelial cell surface antigen 17-1A, a target for antibody-mediated tumor therapy: Its biochemical nature, tissue distribution and recognition by different monoclonal antibodies.  Int J Cancer. 1986;  38 47-53
  • 2 Riethmüller G, Holz E, Schlimok G. et al . Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: Seven-year outcome of a multicenter randomized trial.  J Clin Oncol. 1998;  16 1788-94
  • 3 Dillman R O. Antibodies as cytotoxic therapy.  J Clin Oncol. 1994;  12 1497-515
  • 4 Herberman R B, Ortaldo J R, Mantovani A. et al . Effect of human recombinant interferon on cytotoxic activity of natural killer (NK) cells and monocytes.  Cell Immunol. 1982;  67 160-7
  • 5 Munn D H, Cheung N K. Interleukin- 2 enhancement of monoclonal antibody-mediated cellular cytotoxicity against human melanoma.  Cancer Res. 1987;  47 6600-5
  • 6 Ortaldo J R, Woodhouse C, Morgan A C. et al . Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies.  J Immunol. 1987;  138 3566-72
  • 7 Ralph P, Nakoinz I, Rennick D. Role of interleukin 2, interleukin 4, and alpha, beta, and gamma interferon in stimulating macrophage antibody-dependent tumoricidal activity.  J Exp Med. 1988;  167 712-7
  • 8 Flieger D, Spengler U, Beier I. et al . Enhancement of antibody dependent cellular cytotoxicity (ADCC) by combination of cytokines.  Hybridoma. 1999;  18 63-8
  • 9 Bungard S, Flieger D, Schweitzer S, Sauerbruch T, Spengler U. The combination of interleukin- 2 and interferon-a effectively augments the antibody dependent cellular cytotoxicity of monoclonal antibodies 17-1A and BR55-2 against the colorectal carcinoma cell line HT29.  Cancer Immunol Immunother. 1998;  46 213-20
  • 10 Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g.  Scand J Clin Lab Invest Suppl. 1968;  97 77-89
  • 11 Herlyn M, Steplewski Z, Herlyn D, Koprowski H. Colorectal carcinoma-specific antigen: Detection by means of monoclonal antibodies.  Proc Natl Acad Sci U S A. 1979;  76 1438-52
  • 12 Flieger D, Gruber R, Schlimok G. et al . A novel non-radioactive cellular cytotoxicity test based on the differential assessment of living and killed target and effector cells.  J Immunol Methods. 1995;  180 1-13
  • 13 Flieger D, Beier I, Sauerbruch T, Schmidt-Wolf I. Monocytes and NK cells cooperate with T-helper-lymphocytes for induction of antibody dependent cellular cytotoxicity (ADCC).  J Cancer Res Clin Oncol. 1999;  125 S69 (Suppl.)
  • 14 Adams D O, Hall T, Steplewski Z, Koprowski H. Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contain increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis.  Proc Natl Acad Sci U S A. 1984;  81 3506-10
  • 15 Munn D H, Cheung N K. Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor. Induction of efficient antibody-mediated antitumor cytotoxicity not detected by isotope release assays.  J Exp Med. 1989;  170 511-26
  • 16 Zhang S, Zhang H S, Cordon-Cardo C, Ragupathi G, Livingston P O. Selection of tumor antigens as targets for immune attack using immunohistochemistry: protein antigens.  Clin Cancer Res. 1998;  4 2669-76
  • 17 Grabstein K H, Urdal D L, Tushinski R J. et al . Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor.  Science. 1986;  232 506-8
  • 18 Sampson-Johannes A, Carlino J A. Enhancement of human monocyte tumoricidal activity by recombinant M-CSF.  J Immunol. 1988;  141 3680-6
  • 19 Mufson R A, Aghajanian J, Wong G, Woodhouse C, Morgan A C. Macrophage colony-stimulating factor enhances monocyte and macrophage antibody-dependent cell-mediated cytotoxicity.  Cell Immunol. 1989;  119 182-92
  • 20 Qi C F, Nieroda C, De Filippi R. et al . Macrophage colony-stimulating factor enhancement of antibody-dependent cellular cytotoxicity against human colon carcinoma cells.  Immunol Lett. 1995;  47 15-24
  • 21 Young D A, Lowe L D, Clark S C. Comparison of the effects of IL- 3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity.  J Immunol. 1990;  145 607-15
  • 22 Masucci G, Wersall P, Ragnhammar P, Mellstedt H. Granulocyte-monocyte-colony-stimulating factor augments the cytotoxic capacity of lymphocytes and monocytes in antibody-dependent cellular cytotoxicity.  Cancer Immunol Immunother. 1989;  29 288-292
  • 23 Flieger D, Spengler U, Beier I, Sauerbruch T, Schmidt-Wolf I. Combinations of the cytokines IL- 12, IL- 2 and IFN-a significantly augment whereas the cytokine IL- 4 suppresses the cytokine-induced antibody dependent cellular cytotoxicity of monoclonal antibodies 17-1A and BR55-2. Cytokine (in press)
  • 24 Akiyama Y, Lubeck M D, Steplewski Z, Koprowski H. Induction of mouse IgG2a- and IgG3-dependent cellular cytotoxicity in human monocytic cells (U937) by immune interferon.  Cancer Res. 1984;  44 5127-31
  • 25 Malkovsky M, Loveland B, North M. Recombinant interleukin- 2 directly augments the cytotoxicity of human monocytes.  Nature. 1987;  325 262-5
  • 26 Higashi N, Nishimura Y, Higuchi M, Osawa T. Human monocytes in a long-term culture with interleukin- 2 show high tumoricidal activity against various tumor cells.  J Immunother. 1991;  10 247-55
  • 27 Epling-Burnette P K, Wei S, Blanchard D K, Spranzi E, Djeu J Y. Coinduction of granulocyte-macrophage colony-stimulating factor release and lymphokine-activated killer cell susceptibility in monocytes by interleukin- 2 via interleukin- 2 receptor beta.  Blood. 1993;  81 3130-7
  • 28 Baldwin G C, Chung G Y, Kaslander C. et al . Colony-stimulating factor enhancement of myeloid effector cell cytotoxicity towards neuroectodermal tumour cells.  Br J Haematol. 1993;  83 545-53
  • 29 Munn D H, Armstrong E. Cytokine regulation of human monocyte differentiation in vitro: The tumor-cytotoxic phenotype induced by macrophage colony-stimulating factor is developmentally regulated by gamma-interferon.  Cancer Res. 1993;  53 2603-13
  • 30 Masucci G, Ragnhammar P, Wersall P, Mellstedt H. Granulocyte-monocyte colony-stimulating-factor augments the interleukin- 2-induced cytotoxic activity of human lymphocytes in the absence and presence of mouse or chimeric monoclonal antibodies (mAb 17-1A).  Cancer Immunol Immunother. 1990;  31 231-5
  • 31 Albertini M R, Hank J A, Schiller J H. et al . Phase IB trial of chimeric antidisialoganglioside antibody plus interleukin 2 for melanoma patients.  Clin Cancer Res. 1997;  3 1277-88
  • 32 Frost J D, Hank J A, Reaman G H. et al . A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin- 2 in children with refractory neuroblastoma: A report of the Children's Cancer Group.  Cancer. 1997;  80 317-33
  • 33 Chachoua A, Oratz R, Liebes L. et al . Phase Ib trial of granulocyte-macrophage colony-stimulating factor combined with murine monoclonal antibody R24 in patients with metastatic melanoma.  J Immunother Emphasis Tumor Immunol. 1994;  16 132-41
  • 34 Ragnhammar P, Fagerberg J, Frodin J E. et al . Effect of monoclonal antibody 17-1A and GM-CSF in patients with advanced colorectal carcinoma - long-lasting, complete remissions can be induced.  Int J Cancer. 1993;  53 751-8
  • 35 Hjelm S kog A, Ragnhammar P, Fagerberg J. et al . Clinical effects of monoclonal antibody 17-1A combined with granulocyte/macrophage-colony-stimulating factor and interleukin- 2 for treatment of patients with advanced colorectal carcinoma.  Cancer Immunol Immunother. 1999;  48 463-70
  • 36 Alpaugh R K, von M ehren M, Palazzo I. et al . Phase IB trial for malignant melanoma using R24 monoclonal antibody, interleukin- 2/alpha-interferon.  Med Oncol. 1998;  15 191-8
  • 37 Bajorin D F, Chapman P B, Wong G. et al . Phase I evaluation of a combination of monoclonal antibody R24 and interleukin 2 in patients with metastatic melanoma.  Cancer Res. 1990;  50 7490-5
  • 38 Guadagni F, Schlom J, Johnston W W. et al . Selective interferon-induced enhancement of tumor-associated antigens on a spectrum of freshly isolated human adenocarcinoma cells.  J Natl Cancer Inst. 1989;  81 502-12
  • 39 Hoff A S, Schmidt-Wolf I, Beier I, Sauerbruch T, Flieger D. Enhancement of EPCAM and LewisY antigen-expression by cytokines, monoclonal antibodies and chemotherapeutic drugs.  Onkologie. 1999;  22 (Suppl) 150
  • 40 Vuist W M, Visseren M J, Otsen M. et al . Enhancement of the antibody-dependent cellular cytotoxicity of human peripheral blood lymphocytes with interleukin- 2 and interferon alpha.  Cancer Immunol Immunother. 1993;  36 163-70
  • 41 Anderson J A, Lentsch A B, Hadjiminas D J. et al . The role of cytokines, adhesion molecules, and chemokines in interleukin- 2-induced lymphocytic infiltration in C57BL/6 mice.  J Clin Invest. 1996;  97 1952-9
  • 42 Weidmann E, Bergmann L, Stock J, Kirsten R, Mitrou P S. Rapid cytokine release in cancer patients treated with interleukin- 2.  J Immunother. 1992;  12 123-31
  • 43 Brown Z, Gerritsen M E, Carley W W. et al . Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein- 1 and interleukin- 8 in response to interferon-gamma.  Am J Pathol. 1994;  145 913-21
  • 44 Flieger D, Kleinschmidt R, Schild H H. et al . Immunological effects in patients suffering from colorectal liver metastasis and treated locally with IFN-α/IL- 2 and monoclonal antibody 17-1A.  Ann Hematol. 1998;  77 (Suppl.) A324

Fußnoten

1 Flieger D et al. Influence of cytokines, monoclonal antibodies and chemotherapeutic drugs on EpCAM and LewisY antigen expression (submitted).

Address for correspondence

Dimitri Flieger

Medizinische Klinik und Poliklinik I Allgemeine Innere Medizin Universität Bonn

Sigmund-Freud-Straße 25

D-53105 Bonn

Fax: 02 28/2 87-58 49

Email: D.Flieger@uni-bonn.de

    >