Synthesis Alerts is a monthly feature to help readers of *Synthesis* keep abreast of new reagents, catalysts, ligands, chiral auxiliaries, and protecting groups which have appeared in the recent literature. Emphasis is placed on new developments but established reagents, catalysts etc are also covered if they are used in novel and useful reactions. In each abstract, a specific example of a transformation is given in a concise format designed to aid visual retrieval of information.

Synthesis Alerts is a personal selection by:
Fabrice Anizon, Robert Chow, and Sukhjinder Uppal, Department of Chemistry, Leeds University.

Georg Thieme Verlag does not accept responsibility for the accuracy, content, or selection of the data.

Article Identifier:
1437-210X,E:2001,0,02,0343,0348,ftx.cn:X00201SS.pdf

Copper(II) (Salen) Complex

The title complex is used as a phase transfer catalyst for the asymmetric synthesis of \(\alpha \)-methyl \(\alpha \)-amino acids.

![Copper(II) (Salen) Complex](image)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>A</th>
<th>NaOH (3.5 eq)</th>
<th>PhCH2Br (1.2 eq)</th>
<th>PhMe, rt, 18 h</th>
<th>MeN(\text{Ph})CO2Me</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) A (2 mol%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 examples (yields 0, 42-95%, %ee = 43-86%) are reported.</td>
</tr>
</tbody>
</table>

Y. N. Belkoo, R. G. Davies, M. North

Polymeric Titanium(IV) Glycolate

Reagent A catalyses the epoxidation of allylic alcohols by tert-butyl hydroperoxide (TBHP) under heterogeneous conditions. One other Ti(IV) catalyst is shown.

![Polymeric Titanium(IV) Glycolate](image)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ti(OCH(\text{CH}{2})(\text{O}))(\text{CH}{2})OH</th>
<th>A</th>
<th>(61 mg mmol(^{-1}))</th>
<th>TBHP (2 eq)</th>
<th>CH(\text{Cl}_{2}), 50°C, 16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti((\text{OCH}{2})(\text{CH}{2})(\text{O}))(\text{CH}_{2})OH (\alpha)</td>
<td></td>
<td>A</td>
<td>(61 mg mmol(^{-1}))</td>
<td>TBHP (2 eq)</td>
<td>94% threo:erythro = 90:10</td>
</tr>
</tbody>
</table>

A. Massa, A. Scocazzi
Synlett 2000, 1348.

Titanocene Dichloride

The title reagent catalyses 5-exo cyclisations of epoxides to afford substituted cyclopentanes and tetrahydrofurans.

![Titanocene Dichloride](image)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Cp({2})TiCl({2})</th>
<th>A</th>
<th>(5 mol%)</th>
<th>2,4,6-collidine(\text{HCl}) (2.5 eq)</th>
<th>Mn (2 eq)</th>
<th>THF, rt, 2 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp({2})TiCl({2}) (\alpha)</td>
<td></td>
<td>A</td>
<td>(5 mol%)</td>
<td>2,4,6-collidine(\text{HCl}) (2.5 eq)</td>
<td>Mn (2 eq)</td>
<td>77% (\text{dr} = 52:48)</td>
</tr>
</tbody>
</table>

A. Gansauer, M. Pierobon
Synlett 2000, 1357.
2,6-Lutidine Hydrochloride

The title reagent catalyses the chlorination of aldehydes with chlorine for the preparation of 2,2-dichloroaldehydes.

\[
\begin{align*}
\text{Catalyst} \\
\text{H}_2\text{C} - \text{N} - \text{CH}_3 \\
\text{A} \\
\end{align*}
\]

\[
\begin{align*}
\text{F. Bellesia, L. De Buyck, F. Gheafi, E. Libertini, U. M. Pagnoni, F. Roncaglia} \\
\text{Tetrahedron} 2000, 56, 7507.
\end{align*}
\]

6 examples (yields 90-98%) are reported.

Sulfur-Containing Palladacycle

Palladacycle A is a catalyst precursor for the Suzuki cross-coupling reaction of aryl halides with phenylboronic acid under mild conditions.

\[
\begin{align*}
\text{Catalyst} \\
\text{Me} \text{S} \text{Pd} \text{Cl}_2 \\
\text{Bu} \text{F} \\
\text{A} \\
\text{A} \\
\text{MeO} \text{C} \\
\text{Ph} \\
\end{align*}
\]

\[
\begin{align*}
\text{D. Zim, A. S. Gruber, G. Ebeling, J. Dupont, A. L. Monteiro} \\
\end{align*}
\]

19 examples (yields 13-99%) are reported.

N-Methylanthracenyquininium Chloride

The title reagent promotes the Michael addition of dimethyl malonate to enones by asymmetric solid-liquid phase-transfer catalysis in solvent-free conditions.

\[
\begin{align*}
\text{Catalyst} \\
\text{OR} \\
\text{OMe} \\
\text{A} \\
\end{align*}
\]

\[
\begin{align*}
\text{T. Perrard, J.-C. Plaquevent, J.-R. Desmurs, D. Hebrault} \\
\end{align*}
\]

1 example (yield 91%, %ee = 90%) is reported.

L-Proline / trans-2,5-Dimethylpiperazine

The title reagent pair catalyse the asymmetric conjugate addition of nitroalkanes to cycloalkenones.

\[
\begin{align*}
\text{Catalyst} \\
\text{NH} \text{CO}_2\text{H} \\
\text{A} \\
\text{NH} \text{NH} \\
\text{B} \\
\end{align*}
\]

\[
\begin{align*}
\text{S. Hanessian, V. Pham} \\
\end{align*}
\]

15 examples (yields 30-88%, %ee = 62-93%) are reported.

C₂-Symmetric Zinc(II)-L-Phe-L-Phe Complex

Reagent A catalyses the enantioselective addition of dialkylzincs to aliphatic and aromatic aldehydes.

\[
\begin{align*}
\text{Catalyst} \\
\text{Ph} \\
\text{N} = \text{CPh}_2 \\
\text{A} \\
\text{OH} \\
\text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{B. D. Dangel, R. Poll} \\
\end{align*}
\]

4 examples (yields 27-80%, %ee = 86-96%) are reported.
<table>
<thead>
<tr>
<th>Zinc / Ruthenium Carbene Catalyst</th>
<th>Catalyst</th>
</tr>
</thead>
</table>
| The carboxylation of carbohydrates is accomplished by a novel A-mediated domino reaction to give functionalised dienes followed by B-catalysed ring-closing olefin metathesis. | ![Diagram of reaction](image)

16 examples of diene formation (yields 54-100%) and 8 examples of RCM (yields 55-95%) are reported.

<table>
<thead>
<tr>
<th>(Acetylacetonato)dicarbonylrhodium(I)</th>
<th>Catalyst</th>
</tr>
</thead>
</table>
| The title reagent catalyses tandem intramolecular silylformylation-a-allylsilylation of dialkylsilanes in an approach to polyol synthesis. | ![Diagram of reaction](image)

5 examples (yields 45-65%) are reported.

<table>
<thead>
<tr>
<th>Bis(1,5-cyclooctadiene)nickel(0)</th>
<th>Catalyst</th>
</tr>
</thead>
</table>
| The title reagent catalyses the stereoselective acylstannylation of 1,3-dienes. Transformation of the resulting α-oxoallylstannanes to unconjugated enones are also reported. | ![Diagram of reaction](image)

11 examples (yields 36-86%) are reported.

<table>
<thead>
<tr>
<th>C2-Symmetric Bis(oxazoline)-Copper(II) Complex</th>
<th>Catalyst</th>
</tr>
</thead>
</table>
| The title reagent catalyses the enantioselective Mukaiyama Michael reaction of alkylidene malonates and enol silyl ketene acetal. | ![Diagram of reaction](image)

19 examples (yields 10-99%, ∆ee = 0-99%) are reported.

<table>
<thead>
<tr>
<th>L-Proline</th>
<th>Catalyst</th>
</tr>
</thead>
</table>
| The title reagent catalyses the enantioselective three-component Mannich reaction. | ![Diagram of reaction](image)

7 examples (yields 35-90%, ∆ee = 70-96%) are reported.
Mono Lithium Salt of (R,R)\((-\))\(N,N\)-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine ([R,R](-)-SALEN) Catalyst

The title reagent catalyses the asymmetric addition of trimethylalicyanide to aldehydes to afford TMS ethers of cyanhydrins.

- ![Chemical Structure](image)

13 examples (yields 64-99%, %ee = 0-97%) are reported.

Grubbs' Catalyst Catalyst

The title reagent catalyses enyne metathesis of acetylenic boronates for the construction of cyclic-1,3-diathynylboronic esters.

- ![Chemical Structure](image)

9 examples (yields 65-95%) are reported.

Bidentate N,P Ligand Ligand

Ligand A is applied in the palladium-catalysed asymmetric allylation and Heck reaction. A is from a new class of phosphine-oxazoline ligands, bearing a chiral phosphinothioimidoyl (P-donor) and an oxazoline (N-donor).

- ![Chemical Structure](image)

The synthesis of A and 2 examples of application (yields 91-100%, %ee = 93-94%) are reported.

Lithium N-Trityl-N-(R)-1-Phenethylamide Reagent

The title reagent is a readily available and useful base for the enantioselective formation of chiral enolates from achiral ketones.

- ![Chemical Structure](image)

4 examples (yields 50-99%, %ee = 89-92%) are reported.

(R)-2,2'-Bis[2-(trimethylsilyl)ethoxymeroxy]-1,1'-binaphthyl-Tin Tetrachloride Complex [(R)-BINOL-(SEM)₂SnCl₄] Reagent

The title reagent is used for the enantioselective Prins reaction (acetate-ene reaction) of trisubstituted alkenes to afford optically active homoallylic ethers.

- ![Chemical Structure](image)

4 examples (yields 75-92%, %ee = 73-84%) are reported.
Sodium Bromate / Sodium Hydrosulphite

The title reagent pair is used for the chemoselective cleavage of benzyl ether protecting groups in the presence of benzyloxycarbonyl functions.

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaBrO₃</td>
</tr>
<tr>
<td>Na₂S₂O₄</td>
</tr>
</tbody>
</table>

M. Adinolfi, L. Guariniello, A. Iadonisi, L. Mangoni Synlett 2000, 1300. 7 examples (yields 68-95%) are reported.

Tetrahydroammonium Fluoride / Acetic Acid

The title reagent pair selectively deprotects N-butyldiphenylsilyl ethers in the presence of N-butyldimethylsilyl ethers.

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu₄NF</td>
</tr>
<tr>
<td>AcOH</td>
</tr>
</tbody>
</table>

S. Higashiyamashita, K. Shinko, T. Ishizu, K. Hashimoto, T. Shirahama, M. Nakata Synlett 2000, 1300. 4 examples (yields 68-100%) are reported.

(3aR,7aR)-2-Allyloctahydro-1H,1,3-dimethyl-1,3,2-benzadiaphosphole 2-Oxide

The anion derived from A is used in asymmetric 1,4-addition reactions to α,β-unsaturated carbonyl compounds.

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-BuLi</td>
</tr>
<tr>
<td>CH₂C₂H₂=O</td>
</tr>
<tr>
<td>MeOH</td>
</tr>
</tbody>
</table>

S. Harissian, A. Gomtsyan, N. Malek J. Org. Chem. 2000, 65, 5623. 12 examples (yields 48-93%) are reported.

(R,R)-5,6-Diphenyl-1,4-dioxan-2-one

The boron enolate of A undergoes asymmetric aldol reactions with aldehydes to give protected anti-1,2-diols.

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et₂N</td>
</tr>
<tr>
<td>PhCHO</td>
</tr>
</tbody>
</table>

M. B. Andrus, B. B. V. S. Sekhar, E. L. Meredith, N. K. Dailey Org. Lett. 2000, 2, 3035. 8 examples (yields 70-92%, 80-90%) are reported.

1,3-Dichloro-5,5-dimethylhydantoin

The title reagent is used in a one-pot preparation of chiral 4,5-disubstituted oxazolidinones utilising a modified Sharpless asymmetric aminohydroxylation of β-substituted styrene derivatives followed by base-mediated ring closure.

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂[OsO₂Cl₂(H₂O)₂]</td>
</tr>
<tr>
<td>(DHQ₂)₂PHAL</td>
</tr>
<tr>
<td>Sodium (3 eq), urethane (3 eq)</td>
</tr>
<tr>
<td>NaOH rt, 1 h</td>
</tr>
</tbody>
</table>

N. S. Barta, D. R. Sidler, K. B. Somerville, S. A. Weissman, R. D. Larsen, P. J. Reidar Org. Lett. 2000, 2, 2821. 8 examples (yields 28-81%, 50-98%) are reported.
(Trimethylsilyl)tributylstannane

The title reagent mediates the cyclisation of 1,6-dynes to afford chiral (Z,Z)-1,3-dienes. The helical chirality in 1,4-disubstituted (Z,Z)-1,3-dienes is demonstrated.

\[\text{Me}_2\text{SiSnBu}_3 \]

A

\[\begin{array}{c}
\text{MeO}_2\text{C} \quad \text{CO}_2\text{Me} \\
\text{Me}_2\text{Si} \quad \text{SnBu}_3
\end{array} \]

A (1 eq)

\[\begin{array}{c}
P_2\text{O}_{2}(\text{dbal})_2 (1.25 \text{ mol}\%) \\
(2\text{-Me-C}_6\text{F}_5)_3\text{P} (5 \text{ mol}\%)
\end{array} \]

\[\begin{array}{c}
\text{PHH, } \Delta \text{ 2 h} \\
79\%
\end{array} \]

5 examples (yields 66-79%) are reported.

(Diacetoxyiodo)benzene (DIB)

Aroyl azides are readily prepared from the corresponding aryl aldehydes with the aid of the title reagent and sodium azide.

\[\begin{array}{c}
\text{OC} \\
\text{Ac}
\end{array} \]

A

\[\begin{array}{c}
\text{Ac} \\
\text{N}_3
\end{array} \]

A (1.5 eq)

\[\begin{array}{c}
\text{Na}_2 \quad (2.5 \text{ eq})
\end{array} \]

\[\begin{array}{c}
\text{CH}_3\text{Cl}_2, \text{rt, 2 h} \\
67\%
\end{array} \]

8 examples (yields 43-92%) are reported.

1-Butyl-(2,6-dimethoxy-1-methylcyclohexa-2,5-dienyl)-dimethylsilane

The title reagent is used as an alternative to toxic tin hydrides in free radical chemistry.

\[\begin{array}{c}
\text{TBDMS} \\
\text{MeO} \\
\text{MeO}
\end{array} \]

A

\[\begin{array}{c}
\text{MeO} \\
\text{Me}
\end{array} \]

A (1.5 eq)

\[\begin{array}{c}
\text{AIBN} (0.5 \text{ eq})
\end{array} \]

\[\begin{array}{c}
\text{hexane, } \Delta \text{ 7 h} \\
82\%
\end{array} \]

12 examples (yields 42-99%) are reported.

Ammonium Nitrate / Trifluoroacetic Anhydride

The title reagent pair is used for the regioselective ipso-nitration of arylboronic acids to afford nitroarenes. Dinitro products are obtained under different conditions.

\[\begin{array}{c}
\text{NH}_2\text{NO}_3 \\
\text{B(OH)}_2
\end{array} \]

A

\[\begin{array}{c}
(C\text{F}_3\text{CO})_2\text{O} \\
\text{MeCN, } -35^\circ\text{C, 4 h}
\end{array} \]

B

A (1.1 eq)

\[\begin{array}{c}
\text{B} (1.1 \text{ eq})
\end{array} \]

\[\begin{array}{c}
\text{MeCN, } 0^\circ\text{C, 10 min} \\
93\%
\end{array} \]

8 examples (yields 52-79%) are reported.

Titanium Tetraisodide

The title reagent is used for the chemoselective deoxygenation of sulfoxides.

\[\text{Ti}_4 \]

A

\[\begin{array}{c}
\text{Me} \\
\text{S}
\end{array} \]

Me

A (1.5 eq)

\[\begin{array}{c}
\text{MeCN, } 0^\circ\text{C, 10 min} \\
93\%
\end{array} \]

Me

19 examples (yields 80-97%) are reported.