
LETTER 937

Synlett 2001 SI, 937–940 ISSN 0936-5214 © Thieme Stuttgart · New York

Free Radical Acylation Approaches of C-H Bonds with 2-Chloroethylsulfonyl 
Oxime Ethers
Sunggak Kim,* Namsun Kim, Won-jin Chung, Chang Ho Cho
Department of Chemistry and Center for Molecular Design and Synthesis, School of Molecular Science, Korea Advanced Institute of Sci-
ence and Technology, Taejon 305-701, Korea
Fax +82 42 8698370; E-mail: skim@mail.kaist.ac.kr
Received 17 January 2001
Dedicated to Professor Ryoji Noyori in recognition of his significant contributions to the art of organic synthesis

Abstract: Radical acylations of C-H bonds were successfully ac-
complished with 2-chloroethylsulfonyl oxime ethers.
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Functionalization of C-H bonds is of synthetic importance
and has attracted a great deal of recent attention among or-
ganic chemists.1 In general, two approaches involving a
radical process and a metal complex-mediated process are
usually employed. In a radical process, its characteristic
feature is to generate a radical center by cleaving C-H
bonds inter- or intramolecularly, which allows to func-
tionalize even saturated hydrocarbons under mild condi-
tions.2 In this regard, chlorination and hydroxylation of C-
H bonds are well studied.2,3 For introduction of carbonyl
groups to the C-H bonds, several reports on radical-medi-
ated chlorocarbonylation4 and acylation5 appeared. Acyla-
tions were achieved using biacetyl5a and activated
aldoximes5b as radical acceptors. Recently, Fuchs report-
ed alkynylation, alkenylation, and allylation of C-H bonds
using the corresponding triflones.6 

In connection with our interest in free radical acylation
approaches,7 we had occasion to test the possibility of
acylation of C-H bonds by introducing oxime ether groups
with sulfonyl oxime ethers and found that this approach
could be successfully accomplished with 2-chloroethyl-
sulfonyl oxime ether 1. This radical-mediated process is
very attractive because the present approach not only
avoids the use of highly toxic organotin compounds and
strong acidic or basic conditions but also allows to intro-
duce an oxime ether group with cleaving C-H bonds in a
single step. 

In cleaving C-H bonds, the radical process utilizes elec-
trophilic radicals such as an alkoxy radical, a trifluorome-
thyl radical, and a chlorine atom because those radicals
can form rather strong bonds with hydrogen atoms. For
radical acylation of C-H bonds, two sulfonyl oxime ethers
(1 and 2) were chosen because the chlorine atom could be
generated as shown in Scheme 1. Our approach relies on
an alkyl radical addition to 2-chloroethylsulfonyl oxime
ether 1 followed by b-elimination of 2-chloroethylsulfo-
nyl radical which undergoes thermal decomposition to
generate the chlorine atom along with the liberation of
sulfur dioxide and ethylene.8 Although the chlorine atom

can cleave C-H bonds to generate alkyl radicals along
with the formation of HCl, we assumed that the electro-
philic chlorine atom would not attack 1 to afford O-ben-
zylformohydroximoyl chloride (3) along with the
liberation of 2-chloroethylsulfonyl radical.

Scheme 2 (i) NaH, HSCH2CH2OH, THF, 1.5 h, 85%; (ii) PPh3,
NCS, CH2Cl2, 3 h, 93%; (iii) SeO2, 30% H2O2, MeOH, 24 h, 63%; (iv)
AcSCH2C(Cl) = CH2, NaOMe, MeOH, 0.5 h, 76%; (v) oxone,
MeOH/H2O, 7 h, 63%
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The  preparation  of  1 and 2 is summarized in Scheme 2.
3 was treated with sodium salt of 2-mercaptoethanol in
THF at room temperature for 1.5 h to afford 2-hydroxy-
ethylthio oxime ether 4 in 85% yield. 4 was reacted with
triphenylphosphine and N-chlorosuccinimide in dichlo-
romethane for 3 h to give 2-chloroethylthio oxime ether 5
in 93% yield and 5 was further oxidized with SeO2 and
30% hydrogen peroxide in methanol for 24 h to give
2-chloroethylsulfonyl oxime ether 1 in 63% yield.9 2 was
prepared by the reaction of 3 with sodium salt of 2-chlo-
roallylmercaptan in methanol for 0.5 h and subsequent ox-
idation of 6 with oxone in aqueous methanol for 7 h.

Table Radical acylation of C-H bonds with 1

aMethod A: neat substrate, 10% V-40, reflux; Method B: neat sub-
strate, 300 nm; Method C: 10 equiv of substrate, C6H6, 300 nm
bThe yield was not optimized.

Equations 1-6

Reaction of 1 in refluxing 1,4-dioxane using V-40 as a
radical initiator for 48 h gave the desired oxime ether in
75% yield (Method A). When the same reaction was car-
ried out with 2 under the same conditions, the yield was
somewhat lower (60%). In addition, 2 was thermally un-
stable and underwent decomposition to some extent upon
heating. Thus, remaining reactions were carried out with
1. The similar reaction in refluxing tetrahydrofuran for
30 h gave the corresponding oxime ether in 52% yield.
During the course of our investigation, somewhat surpris-
ingly, we found that the present reaction could be success-
fully carried out under photochemically initiated
conditions (Method B).10 The yield was increased and the
reaction time was significantly shortened under the photo-
chemically initiated condition. When a solution of 1 in
1,4-dioxane was irradiated at 300 nm for 12 h, the desired
oxime ether was isolated in 79% yield. As shown in Table,
reactions with cyclic and acyclic ethers under photochem-
ically initiated conditions resulted in the formation of a-
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oxime ether substituted ethers in high yields. A similar re-
sult was obtained with somewhat sterically hindered 2,5-
dimethyltetrahydrofuran. In contrast, diisopropyl ether
did not react with 1 and latter was converted into 2-chlo-
roethyl oxime ether resulting from the addition of chloro-
ethyl radical to 1 (eq 1). With tetrahydrothiophene, the
reaction was relatively slow and the yield was somewhat
lower. In the case of 1-heptene, the reaction was messy
under photochemically initiated conditions. When a solu-
tion of 1 in 1-heptene in the presence of AIBN as an initi-
ator was refluxed for 14 h, the chlorine atom did not
abstract a hydrogen atom to generate an allyl radical but
added to an alkenyl bond to afford 8 in 73% yield (eq 2).

When the substrate was a solid or a high boilng liquid, the
reaction was carried out with a large excess amount of the
substrate (10 equiv) in benzene at 300 nm (Method C).11

Irradiation of N-benzoyl-pyrrolidine (10 equiv) in ben-
zene at 300 nm for 48 h afforded pyrrolidinyl oxime ether
9 in 75% yield. The use of N-benzoyl-pyrrolidine (3
equiv) under the same condition gave a lower yield (57%).
Similarly, unactivated hydrocarbons such as adamantane
and 1,2,3,4-tetrahydronaphthalene were functionalized as
the oxime ether derivatives. In an effort to examine the re-
gioselectivity of the reaction, three unsymmetrical ethers
were investigated. A low regioselectivity was observed
with 2-methyltetrahydrofuran, yielding approximately a
2:1 mixture of two products (eq 3). Similarly, 1,3-diox-
olane and dimethoxyethane gave lower regioselectivities
due to an intrinsic property of radical reactions (eqs 4 and
5). An oxime ether group could be hydrolyzed into an al-
dehyde group under the acidic conditions (eq 6). Treat-
ment of 9 with HCl in aqueous HCHO at room tempera-
ture for 3 h gave 10 in 85% yield. 

Scheme 3 (i) DHP, TsOH, CH2Cl2, 0.5 h, 93%; (ii) HSCH2CH2OH,
NaOMe; MeOH, 5 h; (iii) NCS, PPh3, CH2Cl2, 0-25 °C, 1 h, 68%
from 12; (iv) m-CPBA, NaHCO3, CH2Cl2, 10 h, 68%

As an extension of this work,12 we briefly studied the pos-
sibility of introducing an a-keto ester group to the C-H
bonds by use of carbomethoxy derivative 11.13 As shown
in Scheme 3, 11 was readily prepared by a four-step se-
quence from previously known compound 12.14 Irradia-
tion of a solution of 11 in tetrahydrofuran at 300 nm for 24
h afforded tetrahydrofuranyl oxime ether 15 in 67% yield.
Similar results were obtained with 1,4-dioxane, diethyl
ether, and t-butyl methyl ether to give 16, 17, and 18 in
good yields, respectively.

In conclusion, we have demonstrated that 2-chloroethyl-
sulfonyl oxime ether 1 and 11 are effective for radical acy-
lations of C-H bonds, thereby introducing a formyl group
and a a-keto ester group.
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