Synthesis of a Mesogenic Compound with a Defined Conformation

Reinhard W. Hoffmann,*,a Trixi Brandl, Peer Kirsch, Klaus Harmsa

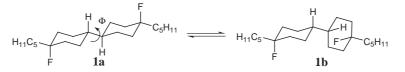
^aFachbereich Chemie, Philipps-University of Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany

^bMerck KGaA, Liquid Crystals Division, 64271 Darmstadt, Germany

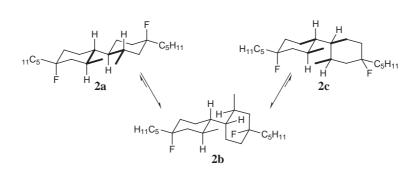
Fax +49 6421 2828917; E-mail: rwho@chemie.uni-marburg.de

Received 22 January 2001

Abstract: The synthesis of the bicyclohexyl derivative **2** has been attained in 4 steps by bi-directional elaboration of bicyclohexanone **3**. Due to the specifically placed methyl substituents, **2** populates a single conformation at the inter-ring bond, resulting in improved material properties.

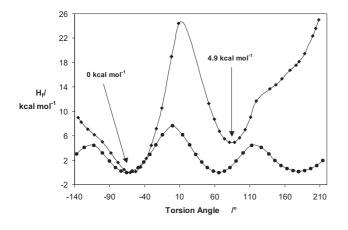

Key words: carbocycles, conformation, fluorine, liquid crystals

Increased use of liquid crystal displays in electronic devices led to a constantly growing demand of new liquid crystalline materials with optimal properties, such as high clearing temperature, low rotational viscosity or high dielectric anisotropy ($\Delta \epsilon$).¹ Recent studies on liquid crystalline compounds of the type 1 demonstrated a remarkable dependence of the dielectric anisotropy of these axially fluorinated bicyclohexyl derivatives on the conformation of the molecular backbone.² AM1-calculations indicated that the dielectric anisotropy vanishes when the dipole moments of the C-F bonds point in opposite directions and cancel each other, i.e. if the conformation at the bicyclohexyl bond is *trans* (Φ = dihedral angle H-C-C- $H = 180^{\circ}$), cf. Scheme 1. In conformations with smaller dihedral angles the dipoles reinforce each other: the smaller Φ the more negative will be the dielectric anisotropy $\Delta \varepsilon$. The actual value of $\Delta \varepsilon$ is then the population weighted average over the conformer population.


Compound 1 populates two types of conformation: The *gauche* conformation 1b (58%, calculated $\Delta \varepsilon = -2.7$)³⁻⁵

and the *trans* conformation **1a** (42%, calculated $\Delta \varepsilon = -0.4$). A Boltzmann distribution over the two conformations **1a** and **1b** predicts an averaged $\Delta \varepsilon$ -value of -1.7, which is slightly lower than the experimentally determined value of $\Delta \varepsilon = -2.5$. Obviously, if the conformer equilibrium can be shifted in the direction of **1b**, the compounds should posses larger negative $\Delta \varepsilon$ -values. A shift in the conformer population toward **1b** could be attained by rational placement of substituents, i.e. by rational conformation design.⁶

We therefore targeted the C_2 -symmetric compound 2, which has two additional methyl groups compared to compound 1. While maintaining free rotation about the inter-ring bond the two equatorial methyl groups should destabilize both the *trans* conformation 2a as well as one of the two possible *gauche* conformations (2c) by two synpentane interactions to the point that these arrangements are no longer minima on the rotational energy profile (a comparison of the calculated rotational profiles for 1 and 2 is given in Figure 1).^{4,5} The calculations show for 2 only two minima on the rotational energy profile: **2b** (Φ = -60°) and, substantially (+4.9 kcal mol⁻¹) higher, another conformer which reduces syn-pentane interactions by increasing⁷ the dihedral angle Φ to 80°. Compound 2 should therefore populate exclusively the strain-free gauche conformation 2b (cf. Scheme 2) which, due to the small dihedral angle at the inter-ring bond should lead to a significantly larger negative $\Delta \varepsilon$ -value.



Scheme 1

Scheme 2

Synlett 2001, SI, 960-963 ISSN 0936-5214 © Thieme Stuttgart · New York

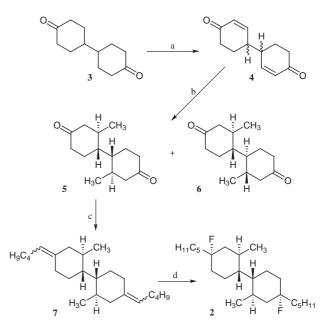
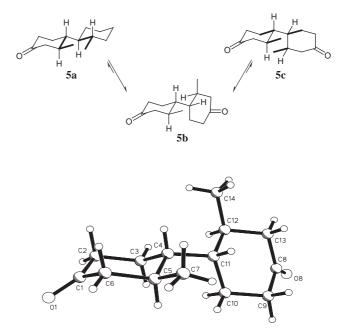


Figure 1 Influence of the torsion angle Φ on the conformational energy ΔH_f (MMFF94) • = 1; • = 2


The synthesis of compound 2 originated from 4,4'-dicyclohexanone 3.8 In a bi-directional approach, 3 was converted to the bis-silylenolether, which was transformed into the bis-enone 4⁹ using the Saegusa protocol.¹⁰ This led to a 1:1 mixture of the *meso-* and *d*/*l*-diastereomers. Subsequent addition of Me₂CuLi introduced the two methyl groups selectively trans to the cyclohexyl substituent furnishing a mixture of meso-5 and d/l-6.11 The diastereomers were both crystalline compounds. X-ray crystal structure analysis¹² of **5** showed that this is the diastereomer which has the proper relative configuration for the synthesis of 2. Wittig reaction of 5 with pentylidene-phosphorane led to an E/Z-mixture of the bisalkene 7.¹³ Following earlier precedent,² the bis-alkene was converted with HF/pyridine (Olah's reagent¹⁴) into the target compound 2, which was recrystallized to diastereomeric purity.15

Conformational analysis of the bicyclohexyl derivatives rests on a determination of the ${}^{3}J_{\text{H-H}}$ coupling constant across the inter-ring bond. In the case of compound 2, this was prevented by severe signal overlap. We therefore turned to conformational analysis of the precursor ketone 5, which should display a similar conformational behavior to that of **2**. The SELINCOR technique^{16,17} without proton decoupling permitted the determination of the ${}^{3}J_{\text{H-H}}$ coupling constant across the inter-ring bond to J = 3.0 Hz. This value documents the predominance of a gauche conformation but does by itself not differentiate between the two possible gauche conformations to 5b and 5c. Since the conformation **5b** is the only one free of *syn*-pentane interactions, the latter is likely the predominant conformation. This is indeed the conformation found in the solid state, as the X-ray crystal structure of **5** shows (Scheme 4).

The high conformational preference found for the ketone **5** should also prevail in the difluoro compound **2**, a fact that should be reflected in the dielectric anisotropy of compound **2**: With a $\Delta \varepsilon$ -value of -4.2,¹⁸ compound **2** posseses indeed a much improved dielectric anisotropy compared to compound **1**.

Scheme 3 a) (i) LDA, THF, -78 °C, then TMSCl; (ii) $Pd(OAc)_2$, *p*-benzoquinone, CH₃CN, rt, 72%; b) Me₂CuLi, THF, -78 °C, separation of *meso* 36% and d/l 36%; c) C₅H₁₁PPh₃Br, KOtBu, Et₂O, 0 °C, 95%; d) 70% HF•pyridine, THF, 28%

Scheme 4

We showed in this study that conformation design, i.e. the selective destabilization of undesired conformers by rational placement of substituents, led the way from 1 to compound 2 with an attendant improvement in the conformation-dependent material properties.

Acknowledgement

This study has been supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie (fellowship to T.B.).

References and Notes

- Kirsch, P.; Bremer, M. Angew. Chem., Int. Ed. 2000, 112, 4216.
- (2) Kirsch, P.; Tarumi, K. Angew. Chem., Int. Ed. Engl. 1998, 110, 484.
- (3) The energy profile for the rotation about the inter-ring bond was calculated using the MMFF94 force field. The structures corresponding to the minima were optimized by AM1- calculations and used as input for the calculations of the $\Delta \epsilon$ -values.
- (4) Bremer, M.; Tarumi, K. Adv. Mater. 1993, 5, 842.
- (5) Klasen, M.; Bremer, M.; Götz, A.; Manabe, A.; Naemura, S.; Tarumi, K. Jpn. J. Appl. Phys. **1998**, 37, L945.
- (6) Hoffmann, R.W. Angew. Chem., Int. Ed. 2000, 112, 2054.
- (7) Tsuzuki, S.; Schäfer, L.; Goto H.; Jemmis, E.D.; Hosoya, H.; Siam, K.; Tanabe, K.; Osawa, E. J. Am. Chem. Soc. 1991, 113, 4665.
- (8) Pedersen, L.D.; Weiler, L. Can. J. Chem. 1977, 55, 782.
- (9) Bicyclohexyl-2,2'-diene-4,4'-dione (4). n-BuLi (1.53 M in hexane, 67.0 mL, 103 mmol) was added at -78 °C into a solution of diisopropylamine (15.1 mL, 108 mmol) in THF (150 mL). The mixture was warmed to 0 °C for 10 min, then cooled to -78 °C prior to addition of a solution of the diketone 3 (4.857 g, 25.00 mmol) in THF (20 mL). After stirring for 2.5 h chlorotrimethylsilane (15.8 mL, 125.0 mmol) was added and the mixture was allowed to warm to 0 °C over a 1 h period. Saturated aqueous NaHCO₃ solution (100 mL) was added, the phases were separated and the aqueous phase was extracted with pentane $(3 \times 70 \text{ mL})$. The combined organic phases were dried (Na₂SO₄) and concentrated. The resulting crude bis-silylenolether was dissolved in acetonitrile (120 mL) and successively treated with Pd(OAc)₂ (5.980 g, 55.00 mmol) and *p*-benzoquinone (12.350 g, 55.00 mmol). The resulting mixture was stirred for 12 h and filtered over a short pad of celite. After removal of the solvent the residue was purified by flash chromatography (pentane/tert-butyl methyl ether 1:9) to give dienone 4 (4.384 g, 92%) as a pale yellow solid as a mixture of d_{l} and meso-isomers. R_{f} 0.16 (petroleum ether/tert-butyl methyl ether 1:9); mp 40-44 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.84-1.87$ (m, 2H), 1.91-1.94 (m, 2H), 2.07-2.13 (m, 4H), 2.41 (ddd, 2H, J = 1.3, 5.0, 13.8 Hz), 2.45 (ddd, 2H, *J* = 1.2, 5.0, 13.6 Hz), 2.56 (q, 2H, *J* = 4.3 Hz), 2.60 (q, 2H, *J* = 4.3 Hz), 2.63-2.70 (m, 2H), 2.72-2.78 (m, 2H), 6.09-6.16 (m_c, 4H), 6.80-6.83 (m_c, 2H), 6.85-6.88 (m_c, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 25.8 (2C), 26.1 (2C), 37.1 (2C), 37.2 (2C), 40.0 (2C), 40.1 (2C), 130.8 (2C), 131.2 (2C), 151.2 (2C), 151.6 (2C), 198.7 (2C), 198.8 (2C); HRMS Calcd for C₁₂H₁₄O₂: 190.0994; Found: 190 0991
- (10) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
- (11) 2,2'-Dimethyl-bicyclohexyl-4,4'-dione (5,6). Methyllithium (1.3 M in Et₂O, 15.5 mL, 20.1 mmol) was added at 0 °C to a suspension of CuI (1.916 g, 10.06 mmol) in Et₂O (50 mL). The solution was cooled to -78 °C and a solution of the dienone 4 (598 mg, 3.14 mmol) in Et₂O (10 mL) was added dropwise. After warming to 0 °C over 5 h saturated aqueous NH₄Cl solution (50 mL) and concd. aqueous NH₃ (25 mL) were added. The phases were separated and the aqueous phase was extracted with *tert*-butyl methyl ether (3 × 40 mL). The combined organic phases were washed with brine (10 mL),

dried (Na₂SO₄) and concentrated. Purification by flash chromatography (pentane/tert-butyl methyl ether 1.5:1) afforded d,l-diketone 5 (246 mg, 36%) and meso-diketone 6 (261 mg, 36%) as colorless solids. 5: $R_{\rm f}$ 0.50 (petroleum ether/ tert-butyl methyl ether 1:9) mp: 92 °C; ¹H NMR (500 MHz, $CDCl_3$): $\delta = 1.03$ (d, 6H, J = 6.4 Hz), 1.40 (dq, 2H, $J_d = 4.3$ Hz, $J_{a} = 13.5$ Hz), 1.72-1.78 (m, 2H), 1.87-1.91 (m, 4H), 2.14 (t, 2H, J = 13.5 Hz), 2.30 (dd, 2H, J = 6.1, 13.5 Hz), 2.39-2.43(m, 4H); ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 19.7$ (2C), 24.6 (2C), 35.1 (2C), 41.1 (2C), 42.5 (2C), 49.9 (2C), 210.7 (2C); Anal. Calcd for C₁₄H₂₂O₂: C 75.63; H 9.97; Found: C 75.50; H 9.88. 6: $R_{\rm f}$ 0.44 (petroleum ether/ *tert*-butyl methyl ether 1:9); mp: 90 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.75$ (d, 6H, J = 6.6 Hz), 1.20-1.24 (m, 2H), 1.27 (dd, 2H, J = 4.2, 12.6 Hz), 1.34-1.42 (m, 2H), 1.50-1.59 (m, 2H), 1.78 (ddd, 2H, *J* = 1.0, 10.7, 11.7 Hz), 1.95-2.00 (m, 2H), 2.23 (ddd, 2H, J = 2.1, 4.5, 14.1 Hz), 2.27-2.31 (m, 2H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 21.2$ (2C), 28.6 (2C), 34.9 (2C), 40.7 (2C), 44.6 (2C), 49.4 (2C), 211.1 (2C); Anal. Calcd for C₁₄H₂₂O₂: C 75.63; H 9.97; Found: C 75.92; H 10.06.

- (12) Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-157219. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.
- (13) (1R*,2R*,1'R*,2'R*)-2,2'-Dimethyl-4,4'-dipentylidenebicyclohexyl (7). Potassium tert-butoxide (168 mg, 1.50 mmol) was added at 0 °C to a suspension of npentyltriphenylphosphonium bromide (620 mg, 1.50 mmol) in Et₂O (4 mL). The mixture was stirred for 1.5 h and then diketone 5 (98 mg, 0.44 mmol) was added. After stirring for 8 h at room temperature, silica gel (1.5 g) was added and the solvent was removed in vacuo. The residue was purified by flash chromatography (pentane) to afford an E/Z-mixture of the diolefin 7 (139 mg, 95%) as a colorless oil. $R_{\rm f}$ 0.81 (petroleum ether/ tert-butyl methyl ether 1:1); ¹H NMR (500 MHz, CDCl₃): $\delta = 0.88-0.95$ (m, 26H), 1.29-1.36 (m, 28H), 1.48 (t, 2H, J = 12.6 Hz), 1.60-1.66 (m, 6H), 1.80 (t, 2H, J = 11.6 Hz), 1.95-2.07 (m, 8H), 2.14-2.20 (m, 4H), 2.57 (d, 2H, J = 13.2 Hz), 2.62 (dt, 2H, $J_d = 12.6$ Hz, $J_t = 1.8$ Hz), 5.05-5.08 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ = 14.0 (4C), 19.5 (2C), 19.9 (2C), 20.0 (2C), 22.2 (2C), 26.0 (2C), 26.6 (2C), 28.6 (2C), 32.4 (2C), 34.9 (2C), 35.0 (2C), 35.7 (2C), 35.8 (2C), 37.0 (2C), 38.0 (2C), 44.3 (2C), 44.4 (2C), 44.5 (2C), 46.3 (2C), 121.1 (2C), 121.3 (2C), 138.9 (2C), 139.1 (2C); Anal. Calcd for C24H42: C 87.19; H 12.81; Found: C 87.01; H 12.58.
- (14) Olah, G.A.; Welch, J.T.; Vankar, Y.D.; Nojima, M.; Kerekes, I.; Olah, J.A. J. Org. Chem. 1979, 44, 3872.
- (15) (1R*,2R*,4S*,1'R*,2'R*,4'S*)-4,4'-Difluoro-2,2'dimethyl-4,4'dipentyl-bicyclohexyl (2). A solution of an E/Z-mixture of the diolefin 7 (165 mg, 0.50 mmol) and HFpyridine complex (1 mL, 70% w/w) in THF (1 mL) was stirred for 12 h. The mixture was poured on ice and neutralized with solid NaHCO₃. The phases were separated and the aqueous phase was extracted with pentane $(3 \times 3 \text{ mL})$. The combined organic phases were dried (Na2SO4) and concentrated. Purification by flash chromatography (pentane) furnished 2 (59 mg, 32%) along with monofluorinated product (42 mg, 24%) and residual diolefin 7 (46 mg, 28%). Further purification of the obtained product by crystallisation (nheptane) afforded 2 (52 mg, 28%) as a single isomer. $R_{\rm f}$ 0.11 (pentane); mp: 70 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.83$ (d, 6H, *J* = 6.6 Hz), 0.89 (t, 6H, *J* = 6.6 Hz), 1.01 (dd, 2H, *J* = 12.5, 13.7 Hz), 1.11-1.19 (m, 2H), 1.29-1.58 (m, 22H), 1.74-1.93 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$

(2C), 19.2 (2C), 20.3 (2C), 22.6 (2C), 22.8 (d, 2C, J = 4.7 Hz), 28.8 (2C), 32.3 (2C), 35.2 (d, 2C, J = 22.9 Hz), 41.1 (d, 2C, J = 22.8 Hz), 43.3 (2C), 44.6 (d, 2C, J = 22.6 Hz), 96.0 (d, 2C, J = 167.2 Hz); ¹⁹F NMR (188 MHz, CDCl₃): $\delta = -157.5$; Anal. Calcd for C₂₄H₄₄F₂: C 77.78; H 11.97; Found: C 77.79; H 12.26.

- (16) Berger, S. J. Magn. Reson. 1989, 81, 561.
- (17) Fäcke, T.; Berger, S. Magn. Res. Chem. 1995, 33, 144.
- (18) The $\Delta \epsilon$ -values were determined by linear extrapolation from a 10% w/w solution in the commercially available Merck mixture ZLI-2857 (T_{NI} = 82.3 °C, $\Delta \epsilon$ = -1.42, Δn = 0.0776) as a standard host.

Article Identifier:

1437-2096,E;2001,0,SI,0960,0963,ftx,en;Y02401ST.pdf