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Abstract: The synthesis of the bicyclohexyl derivative 2 has been
attained in 4 steps by bi-directional elaboration of bicyclohexanone
3. Due to the specifically placed methyl substituents, 2 populates a
single conformation at the inter-ring bond, resulting in improved
material properties.
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Increased use of liquid crystal displays in electronic de-
vices led to a constantly growing demand of new liquid
crystalline materials with optimal properties, such as high
clearing temperature, low rotational viscosity or high di-
electric anisotropy (De).1 Recent studies on liquid crystal-
line compounds of the type 1 demonstrated a remarkable
dependence of the dielectric anisotropy of these axially
fluorinated bicyclohexyl derivatives on the conformation
of the molecular backbone.2 AM1-calculations indicated
that the dielectric anisotropy vanishes when the dipole
moments of the C-F bonds point in opposite directions
and cancel each other, i.e. if the conformation at the bicy-
clohexyl bond is trans (F = dihedral angle H-C-C-
H = 180°), cf. Scheme 1. In conformations with smaller
dihedral angles the dipoles reinforce each other: the small-
er F the more negative will be the dielectric anisotropy
De. The actual value of De is then the population weighted
average over the conformer population.

Compound 1 populates two types of conformation: The
gauche conformation 1b (58%, calculated De = -2.7)3-5

and  the  trans  conformation  1a  (42%, calculated De =
-0.4). A Boltzmann distribution over the two conforma-
tions 1a and 1b predicts an averaged De-value of -1.7,
which is slightly lower than the experimentally deter-
mined value of De = -2.5. Obviously, if the conformer
equilibrium can be shifted in the direction of 1b, the com-
pounds should posses larger negative De-values. A shift in
the conformer population toward 1b could be attained by
rational placement of substituents, i.e. by rational confor-
mation design.6

We therefore targeted the C2-symmetric compound 2,
which has two additional methyl groups compared to
compound 1. While maintaining free rotation about the in-
ter-ring bond the two equatorial methyl groups should de-
stabilize both the trans conformation 2a as well as one of
the two possible gauche conformations (2c) by two syn-
pentane interactions to the point that these arrangements
are no longer minima on the rotational energy profile (a
comparison of the calculated rotational profiles for 1 and
2 is given in Figure 1).4,5 The calculations show for 2 only
two minima on the rotational energy profile: 2b (F =
-60°) and, substantially (+4.9 kcal mol-1) higher, another
conformer which reduces syn-pentane interactions by
increasing7 the dihedral angle F to 80°. Compound 2
should therefore populate exclusively the strain-free
gauche conformation 2b (cf. Scheme 2) which, due to the
small dihedral angle at the inter-ring bond should lead to
a significantly larger negative De-value. 
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Figure 1 Influence of the torsion angle F on the conformational en-
ergy DHf (MMFF94) •  1; ¨ = 2

The synthesis of compound 2 originated from 4,4’-dicy-
clohexanone 3.8 In a bi-directional approach, 3 was con-
verted to the bis-silylenolether, which was transformed
into the bis-enone 49 using the Saegusa protocol.10 This
led to a 1:1 mixture of the meso- and d/l-diastereomers.
Subsequent addition of Me2CuLi introduced the two me-
thyl groups selectively trans to the cyclohexyl substituent
furnishing a mixture of meso-5 and d/l-6.11 The diastere-
omers were both crystalline compounds. X-ray crystal
structure analysis12 of 5 showed that this is the diastere-
omer which has the proper relative configuration for the
synthesis of 2. Wittig reaction of 5 with pentylidene-phos-
phorane led to an E/Z-mixture of the bisalkene 7.13 Fol-
lowing earlier precedent,2 the bis-alkene was converted
with HF/pyridine (Olah’s reagent14) into the target com-
pound 2, which was recrystallized to diastereomeric puri-
ty.15

Conformational analysis of the bicyclohexyl derivatives
rests on a determination of the 3JH-H coupling constant
across the inter-ring bond. In the case of compound 2, this
was prevented by severe signal overlap. We therefore
turned to conformational analysis of the precursor ketone
5, which should display a similar conformational behavior
to that of 2. The SELINCOR technique16,17 without proton
decoupling permitted the determination of the 3JH-H cou-
pling constant across the inter-ring bond to J = 3.0 Hz.
This value documents the predominance of a gauche con-
formation but does by itself not differentiate between the
two possible gauche conformations to 5b and 5c. Since
the conformation 5b is the only one free of syn-pentane in-
teractions, the latter is likely the predominant conforma-
tion. This is indeed the conformation found in the solid
state, as the X-ray crystal structure of 5 shows (Scheme 4). 

The high conformational preference found for the ketone
5 should also prevail in the difluoro compound 2, a fact
that should be reflected in the dielectric anisotropy of
compound 2: With a De-value of -4.2,18 compound 2 pos-
seses indeed a much improved dielectric anisotropy com-
pared to compound 1.

We showed in this study that conformation design, i.e. the
selective destabilization of undesired conformers by ratio-
nal placement of substituents, led the way from 1 to com-
pound 2 with an attendant improvement in the
conformation-dependent material properties.
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