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Abstract: Thefirst total synthesisof cis,cis-ceratospongamide (1a),
isolated from marine source, was accomplished viathiazole synthe-
sis using CMD methodology, DEPC-mediated peptide coupling,
macrol actamization, and cyclodehydration. Comparison of the cy-
clization sites and coupling reagents in the macrol actamization step
was also investigated.
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Ceratospongamide is a bioactive thiazole-containing cy-
clic heptapeptide isolated by Gerwick and co-workers
from the Indonesian red alga Ceratodictyon spongiosum
and symbiotic sponge Sgmadocia symbiotica.® This pep-
tide consists of two L-phenylalanine residues, one (L-iso-
leucine)-L-methyloxazoline residue, one L-proline
residue, and one (L-proline)thiazole residue. Interestingly,
ceratospongamide is able to be isolated as two stable iso-
mers, which are assigned as cis,cis-and trans,trans-iso-
mers (1a, 1b) of the two proline amide bonds by Gerwick
and co-workers (Figure 1). Both compounds show moder-
ate potency in the brine shrimp toxicity assay (LDgy= 13-
19 puM). In addition, trans,trans-ceratospongamide (1b)
exhibits potent inhibition of the expression of a key en-
zyme in the inflammatory cascade, secreted phospholi-
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pase A, (SPLA,) with an EDg, of 32 nM, whereas the
cis,cis-conformer (1a) is inactive. As a part of our pro-
gram toward the total synthesis of marine natural prod-
ucts,> we have embarked on the total synthesis of
ceratospongamide.®

Our retrosynthetic analysis of ceratospongamideis shown
in Scheme 1. Asthe oxazolinering is sensitive under acid-
ic conditions, we used allo-L-threonine as a precursor of
the oxazoline and postponed the cyclodehydration of the
threonine residue to the final stage of the total synthesis
for reducing the risk of racemization at the chiral center
attached to the heterocycle.* For the synthesis of the mac-
rocycle 2, a[5+2] convergent strategy was adopted to give
the pentapeptide segment 3 and dipeptide segment 4. Be-
cause thethiazole and L-proline residues|ocated on the C-
terminus in peptide coupling would be tolerant of racem-
ization, the segment condensation and macrocyclization
at the thiazole/L-phenylalanine and L-proline/L-isoleucine
amide bonds were chosen among the six amide bonds.

For the preparation of the thiazole amino acid fragment 8,
we applied our CMD (chemica manganese dioxide) oxi-
dation for the conversion of thiazolidine to thiazole
(Scheme 2).%® Coupling of Boc-protected L-proline with
N,O-dimethylhydroxylamine using DEPC (diethyl phos-
phorocyanidate)® afforded the amide 5in 88% yield. After
reduction of the amide 5 with lithium aluminum hydride,”
the resulting aldehyde 6 was condensed with L-cysteine
methyl ester to give the thiazolidine 7 as a diastereomeric
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mixture in 73% yield. Subsequent CMD oxidation of the
thiazolidine 7 provided the thiazole fragment 8 in 51%
yield.
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The dipeptide segment 4 was obtained by coupling of
Boc-protected L-phenylalanine with L-proline methyl es-
ter using DEPC in 97% yield (Scheme 3). For the prepa-
ration of the pentapeptide segment 3, removal of the Boc
protective group of the thiazole fragment 8 with hydrogen
chloride in dioxane followed by condensation with Boc-
protected L-phenylalanine using DEPC in 94% yidld. Iter-
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ative removal of the Boc protective group followed by
peptide coupling with the Boc derivatives of L-allo-threo-
nine and L-isoleucine led to the pentapeptide segment 3.
After acidic deprotection of the Boc group of 3, segment
condensation with the acid derived from the dipeptide 4
proceeded smoothly to give the fully protected heptapep-
tide 11 in 94% yield (Scheme 3). Similarly, deprotection
of the Boc group of 4 and segment condensation with the
acid derived from 3 also afforded the other linear precur-
sor 12 in 99% yield. The stage was now set for the com-
parison of macrolactamization step at two sites (Thz/Phe
vs. Pro/lle). After deprotection of the Boc group in 11 and
12 with hydrogen chloride in dioxane and saponification
of the methy! ester with lithium hydroxide, macrolactam-
izations of the resulting two free linear precursors were
performed in a DMF solution (0.002 M) by using DPPA
(diphenyl phosphorazidate),® FDPP (pentafluorophenyl
diphenylphosphinate),® and HATU [O-(7-azabenzotriaz-
ol-1-y1)-N,N,N’',N’ -tetramethyluronium hexafluorophos-
phate],'° respectively. The cyclization at the Thz/Phe site
proceeded smoothly and the yield by FDPP was higher
than those by DPPA and HATU. In contrast, the cycliza-
tion at Pro/lle site was sluggish to proceed, and especially
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no cyclized product was obtained by use of HATU. Ac-
cordingly, we carried out the macrolactamization at the
Thz/Phe site with 1.5 equivalents of FDPP and 4 equiva-
lents of i-Pr,NEt at room temperature to give the cyclic
peptide 2 in 63% yield from the corresponding linear pre-
cursor 11. Finaly, cyclodehydration of the allo-threonine
residue with bis(2-methoxyethyl)aminosulfur trifluoride
(Deoxo-fluor) to the oxazoline!* produced the target com-
pound, which was completely identical with natural
cis,cis-ceratospongamide (1a) as judged by *H and *C
NMR spectra, HPLC, and TLC R; values (Scheme 3).

In conclusion, we have developed an efficient strategy to-
ward the total synthesis of cis,cis-ceratospongamide. The
conversion of synthetic cis,cis-ceratospongamide (1a) to
its trans,trans-isomer (1b) is currently underway.
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