Novel Synthesis of 2,3-Bisboryl-1,3-dienes from 1-Bromo-1-lithioethene and 1,1-Bisborylalkenes

Masaki Shimizu, Takuya Kurahashi, Tamejiro Hiyama

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
Fax +81 75 753 5555; E-mail: shimizu@npc05.kuic.kyoto-u.ac.jp

Received 2 February 2001
This paper is dedicated to Professor Ryoji Noyori on the occasion of his retirement of Nagoya University, Japan

Abstract: Treatment of 1,1-[bis(pinacolato)boryl]alkenes with excess of 1-bromo-1-lithioethene was found to give 2,3-bis-[pinacolato)boryl]-1,3-dienes in moderate to good yields. Synthetic applications of 2,3-bis(pinacolato)boryl]-1,3-butadiene were also demonstrated.

Key words: boron, lithium, carbenoids, insertion, alkenes

Alkenylboron compounds are readily accessible and extremely useful reagents in organic synthesis.¹ In contrast, bis(alkenylboron) compounds have attracted less attention probably because their facile syntheses are quite limited,² though bis(alkenylboron) compounds would be employed for an efficient synthesis of polysubstituted olefins through double carbon-carbon bond formation with retention of configuration by a simple experimental operation. Very recently, we found that treatment of bis(pinacolato)diboron 1 or (dimethylphenylsilyl)(pinacolato)boron 3 with 1-halo-1-alkynyl lithium gave the corresponding 1,1-bisborylalkanes 2 or 1-silyl-1-borylalkenes 4, respectively.³ In particular, 2 is a parent example of bis(alkenylboron) compounds (eq.1).

Equation

During the course of the synthetic studies, we eventually found that 2,3-bisboryl-1,3-dienes 5a were produced when excess of 1-bromo-1-lithioethene was treated with 1. Formation of 5a was ascribed to the reaction of 1,1-bisborylethenes 2a with CH₂-CBrLi followed by 1,2-migration of a carbon (Scheme 1).¹⁴⁻¹⁵ We report herein that the synthesis of 2,3-bisboryl-1,3-dienes is general,¹⁴ and bisborylated 1,3-dienes 5 serve as useful precursors of complex 1,3-dienes.⁵ In addition, introduction of two boryl groups into a 1,3-diene unit enhances the synthetic utility of the addition products.

Identification of the addition products.

Treatement of 1-bromo-1-lithioethene (1 mol), generated from vinyl bromide and lithium 2,2,6,6-tetramethylpiperidine (LiTMP) in THF-Et₂O (2:1) at -110 °C, with 1,1-bis[pinacolato)boryl]ethene 2a (1 mol) at -110 °C gave 2,3-bisboryl-1,3-butadiene 5a in 7% yield (Scheme 2). In view that diboron 1 reacts with an equimolar amount of 1-bromo-1-lithioethene to give 2a in 91% yield,³ the low yield indicates that the reaction of the carbenoid with 2a is slower than with 1 and apparently competes with the decomposition of the lithium carbenoid. Then, we increased the amount of the carbenoid reagent, and observed that 72% yield was achieved when 5 molar equivalents of vinyl bromide and LiTMP were employed as shown in Scheme 2.⁶⁻⁷ Noteworthy is that 5a can be purified by column chromatography on silica gel since 2-boryl-1,3-diene is reported to be highly susceptible to dimerization.⁸ Carbenoid generation carried out in the presence of 2a gave 5a in lower yield (59%), while reaction of 2-substituted 1-bromo-1-lithioethene with 2a did not proceed at all.

Scheme 2

The optimized conditions were applied to 2-monosubstituted bisborylethenes 2b and 2c. The corresponding conjugated triene 5b as an E/Z mixture (73:27) and dienyne 5c as the only E-isomer were respectively isolated in 74% and 38% yields.⁹ The stereochemical outcome indicates that 1-bromo-1-lithioethene preferentially attacks the...
sterically less hindered boron atom of 2. Reaction of 2,2-disubstituted-1,1-diborylene 2d and 2e also took place smoothly, giving rise to 5d and 5e in good yields. The highly borylated compounds 8 and 9 contain both alkenyl- and allylmethyl moieties and thus may serve as valuable synthetic reagents.

In summary, we have established a novel synthesis of 2,3-bisboryl-1,3-dienes from 1-bromo-1-lithioethene and 1,1-bisborylene. We can transform 2,3-bisboryl-1,3-dienes into various types of complex molecules using the boron functionality as a key element before/after unique reactions of 1,3-dienes. Further studies based on 2,3-bisboryl-1,3-dienes are in progress in our laboratory.

Acknowledgement

This work was supported by a Grand-in-Aid for COE Research on Element Science, No. 12CE2005 from Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References and Notes


Representative procedure of 5a: Butyllithium in hexane (1.56 M, 321 μL, 0.49 mmol) was added to a solution of 2,2,6,6-tetramethylpiperidine (84 μL, 0.50 mmol) in a mixture of THF (1 mL) and diethyl ether (0.5 mL) at 0 °C for 5 min. Then, to this solution was added a THF solution of vinyl bromide (1.0 M, 500 μL, 0.50 mmol) at −110 °C and 1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethene (2a) (25 mg, 0.10 mmol) in THF (0.1 mL) successively. The reaction mixture was gradually allowed to warm up to room temperature and stirred for 12 h. The reaction mixture was quenched with three drops of sat. aq NH₄Cl, and diluted with diethyl ether (10 mL) and water (3 mL). The organic layer was separated, dried over anhydrous magnesium sulfate, and concentrated in vacuo to give a colorless solid, which was purified by column chromatography (200 mesh silica gel, ethyl acetate-hexane = 1:10) to give 5a (22 mg, 72% yield). Mp: 140 °C (dec). TLC: Rr = 0.33 (hexane-ethyl acetate = 10:1). 1H NMR (200 MHz, CDCl₃): δ 2.43 (CH₃), δ 4.38 (CH₂), δ 4.96 (d, J = 3.9 Hz, 2H), 5.85 (d, J = 3.9 Hz, 2H), 5.96 (d, J = 3.9 Hz, 2H). 13C NMR (50 MHz, CDCl₃): δ 24.8, 83.5, 130.6. IR (nujol) 1460, 1375, 1340, 1300, 1277, 1218, 1120, 1102, 959, 880, 847, 740, 682 cm⁻¹; MS (70 eV) m/z 307 (M⁺+1, 7.1), 306 (M⁺, 40.0), 305 (M⁺-1, 19.6), 291 (M⁺-Me, 8.5), 165 (100). Anal. Calcd for C₁₆H₂₈B₂O₄: C, 62.80; H, 9.42. Found: C, 62.53; H, 9.42.

Further insertion of the carbenoid reagent appears to be inhibited; a reason is unclear at present.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.