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Abstract: Under mild thermal conditions, a [3+3] cycloaddition re-
action between an active methylene compound and a dipolar trime-
thylenemethane species, which is thermally generated from
2-methylenecyclopropanone acetal, provides a dihydropyran.
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Controlling the reactivity of trimethylenemethane (TMM)
species by tuning its electronic state has provided a vari-
ety of synthetically useful chemical transformations.1

Noyori’s pioneering contribution to the use of transition
metals in the TMM chemistry is noteworthy.1c,1d Introduc-
tion of hetero atom substituents, such as alkoxy and alky-
lthio groups, to TMM has been proven by our group to be
effective to achieve fine-tuning of its reactivity.2,3 Thus, it
has been amply demonstrated that 2-methylenecyclopro-
panone acetal (MCPA) 1 serves as a stable precursor to a
highly reactive dialkoxy trimethylenemethane 2, which
undergoes thermal [3+2] cycloaddition to an unsaturated
compound to provide atom-economical synthetic entries
to five-membered carbo- and heterocycles. 

We now wish to report that the ambiphilic character of the
dialkoxy TMM can be exploited in the reaction with a va-
riety of active methylene compounds 3 that leads to the
formation of dihydropyran 5. This formal [3+3] cycload-
dition reaction between MCPA 1 and the active methylene
compound 3 involves C-C bond formation triggered by in
situ deprotonation of 3 by TMM 2 and takes place without
any extraneous additives4 (Scheme 1). 

The synthesis of the dihydropyran 5 by thermal reaction
of 1 with an active methylene compound possessing an al-
kanoyl group was achieved through a very simple experi-
mental procedure. For instance, a mixture of MCPA 1
(1.54 g, 10.0 mmol) and dimedone (1.41 g, 10.1 mmol) in
20 mL of acetonitrile was heated at 60 °C for 12 h. Con-
centration of the reaction mixture followed by silica gel
chromatography afforded the dihydropyran 5 in 84% iso-
lated yield (Table, entry 1).5 

The results of the [3+3] cycloaddition are summarized in
entries 1-7 of Table. The reaction with a five-membered
ring  cyclic 1,3-diketone and keto ester proceeded
smoothly to afford the expected bicyclic dihydropyran in
high yield, which was identified in situ by NMR (entries
2 and 3). Treatment of the product with 1N HCl (30 µL)
in THF (1.5 mL) for 30 min quantitatively afforded the
hydrolysis product 6. As in entries 4 and 5, an acyclic 1,3-
dicarbonyl compound, such as acetylacetone or methyl
acetylacetate, also took part in the [3+3] cycloaddition re-
action to afford the expected dihydropyran product, ac-
companied by an a-methylene-g-lactone acetal due to
[3+2] cycloaddition of the TMM to the carbonyl group2g

(ca. 10% yield). For 1,3-indandione shown in entry 6, the
major product obtained was such a lactone acetal due to
the [3+2] cycloaddition to one of the carbonyl groups. 

As opposed to the ketones in entries 1-5, 1,3-indandione
has no measurable content of enol (which is anti-aromat-
ic) in CDCl3 at room temperature, which provides a rea-
son for predominant carbonyl participation rather than the
enol  participation  necessary  for  the  [3+3] pathway.
Similarly, in entry 7, an a-sulfonyl ketone, which has no
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measurable enol content either, reacted with 1 to afford a
[3+2] cycloadduct as the major product. These results
suggest that the product selectivity, [3+3] vs. [3+2], large-
ly depends on the ease of enol formation from the active
methylene substrate.6 

The reaction between 1 and 3-methylpentan-2,4-dione
(entry 8), which has only one acidic proton, stopped at the
stage of the ketene acetal 4, which provides an experimen-

tal support to the mechanism of the [3+3] cycloaddition
reaction shown in Scheme 1. With the active methylene
compounds lacking an alkanoyl group (in entries 9 and
10), the reaction also stops at the stage of the ketene acetal
formation, since the second enol formation necessary for
the subsequent cyclization is either impossible or unfavor-
able. The ketene acetal product 4 is extremely labile to-
ward moisture. Hence it was identified by NMR in a
CD3CN solution, and then, was isolated as the ester 6.

carbonyl
 [3 + 2] adduct

Me Me

O O

Me OMe

O O

O

O

Me Me

O O

Me

MeO2C CO2Me

PhO2S SO2Ph

O O

OO

O

OO

O

Me Me

O
Me

O Me
Me

X X

O
Me

X X

O

O
Me

X X

O
O

O
Me

O

Me

Me

X X

O
Me

O

Me

MeO

X X

X X

O
Me

(p-Tolyl)SO2
Ph

SO2(p-Tolyl)
Ph

X X

Me

NDe

X X

Me

MeOC COMe
Me

X X

Me

PhO2S SO2Ph

MeO2C CO2Me

O

XX

Me

O

Me

O

XX

Me

O

OMe

O

O

XX

O

XX

SO2(p-Tolyl)

Ph

entry active methylene
compound (equiv) conditions

80 °C, 73 h

80 °C, 37 h

60 °C, 14 h

5 (65%) (10%)

5 (52%) (17%)

5, (<10%)c (52%)

1

2

3

4

5

6

7

8d

9d

10d

4 (40%)c

producta  (yield)

(2.0)

(1.0)

(1.2)

(1.0) 80 °C, 26 h

60 °C, 8 h

110 °C, 20 h

4 (75%)b —

4 (44%)b —

(1.0)

(1.0)

60 °C, 6-8 h

60 °C, 14 h

60 °C, 14 h

5 (84-90%) 0%

5 (90%)b 0%

5 (91%)b 0%

(1.0)

(1.2)

60 °C, 40 h 5 (10%) (44%)(1.0)

(1.0-1.2)

 (yield)

Table Reaction of methylenecyclopropane 1 with active methylene compound

aX,X = -OCH2C(CH3)2CH2O-. bYield refers to the isolated yield of hydrolyzed product 6.
cDetermined by 1H NMR. dReaction was carried out in CD3CN. eNot determined.
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The present reaction most likely proceeds through a se-
quence of deprotonation, coupling, proton transfer and cy-
clization of the resulting enol (Scheme 1). This sequence
was not only supported by experimental observations
mentioned above, but also by experiments using di-deu-
terated acetylacetone (H* = 2H) that afforded the cycload-
duct 5 bearing deuterium atoms only at the positions
marked with H*. Ambiguity remains however in the de-
tails of the formation of 4 after protonation of the TMM 2.
One possibility involves direct C-C bond formation on the
enol carbon atom in the ion pair (Scheme 2, path a), and
another involves Claisen rearrangement of an intermedi-
ary vinyl ether 9, that may result from the C-O bond for-
mation at the most positively and the most negatively
charged centers in the ion pair (Scheme 2, path b). 

Scheme 2

According to the fact that the activation energy of the par-
ent Claisen rearrangement (allyl vinyl ether) is more than
25 kcal/mol7 and high temperature (>200 °C) is usually
required for the reaction, one may conclude that path b is
impossible. Density functional calculations, however,
showed that the presence of both an acetal and a carbonyl
groups as in 9 lowers the activation energy by nearly
9 kcal/mol from the values in literatures.8 Therefore, both
paths are equally plausible in the present [3+3] cycloaddi-
tion reaction.

In summary, a thermal [3+3] cycloaddition reaction of a
dipolar trimethylenemethane species to an active methyl-
ene compound was described. This new cycloaddition re-
action proceeds via ionic alkylation of the active
methylene substrate under neutral and mild conditions,
showing the viability of tuning the electronic state of
TMM by installation of appropriate substituents.
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