Z Gastroenterol 2001; 39(11): 911-918
DOI: 10.1055/s-2001-18537
Originalarbeiten
© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Colonic fermentation as affected by antibiotics and acidic pH: Application of an in vitro model

Beeinflussung des mikrobiellen Dickdarmstoffwechsels durch Antibiotika und sauren pH-Wert: Untersuchung in einem In-vitro-ModellA. Bender1 , G. Breves1 , J. Stein2 , S. Leonhard-Marek1 , B. Schröder1 , C. Winckler3
  • 1Department of Physiology, School of Veterinary Medicine, 30173 Hannover, Bischofsholer Damm 15/102, Germany
  • 22nd Department of Internal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
  • 3Research Centre for Animal Production and Technology, Georg August University, Göttingen, Germany
Further Information

Publication History

11.5.2001

3.7.2001

Publication Date:
21 November 2001 (online)

Summary: Antimicrobial substances such as vancomycin or metronidazole suppress normal gut flora, thereby preventing physiological fermentation of colonic substrates that may promote mucosal inflammation. This study was designed to establish an in vitro model of microbial metabolism in the colon under control and disturbed conditions (acidic pH) to investigate specific effects of vancomycin and metronidazole on the production of short chain fatty acids (SCFA), which play a pivotal role in maintaining homeostasis in the colon. The experiments were carried out with the colon simulation technique (Cositec) representing an in vitro model for the semi-continuous incubation of defined colon contents. Inocula and fermentable substrates were sampled from cecal contents of fistulated pigs. Disturbed microbial metabolism was generated by reduction of pH in the fermentation vessels from 6.7 to 5.8 and 5.1. In general, application of either vancomycin or metronidazole resulted in a significant decrease of SCFA production rates indicating substantial disturbance of the homeostasis of microbial metabolism. With low doses of vancomycin acetate and butyrate production rates were reduced and with high doses of the antibiotic propionate production was inhibited to a greater extent. Treatment with metronidazole inhibited butyrate production almost completely. Similarly, low pH caused a reduction in total SCFA production, which was mainly due to respective decrease of acetate synthesis. Metronidazole effects were not consistently changed at low pH. The Cositec system provides an excellent facility to test the effects of different antibiotics under defined conditions. In this study, both vancomycin and metronidazole affected microbial metabolism to a considerable extent. Both substances may thus be responsible for disturbances of colon function in vivo.

Beeinflussung des mikrobiellen Dickdarmstoffwechsels durch Antibiotika und sauren pH-Wert: Untersuchung in einem In-vitro-Modell

Mithilfe der Kolon-Simulationstechnik (Cositec), einer semikontinuierlichen In-vitro-Inkubationsmethode, wurden die Auswirkungen des Antibiotikums Vancomycin und des Chemotherapeutikums Metronidazol auf den Stoffwechsel der Dickdarmflora des Schweines untersucht. Als Spendertiere für die Inokula und fermentierbaren Substrate dienten Mastschweine, die mit einer Zökumkanüle versehen waren. Des Weiteren wurde ein Modell zur Störung des mikrobiellen Stoffwechsels im Cositec-System ohne Zusatz von Antibiotika etabliert. Dazu wurde der pH-Wert im Cositec-System von pH 6,7 auf 5,8 bzw. 5,1 erniedrigt. Schließlich wurde die gleichzeitige Wirkung von saurem pH und Metronidazol auf den Dickdarmstoffwechsel geprüft. Beide antimikrobiellen Wirkstoffe verursachten eine signifikante Störung des mikrobiellen Stoffwechsels, die sich vor allem in einer Abnahme der Produktion kurzkettiger Fettsäuren (SCFA) manifestierte. Bei niedrigen Vancomycin-Konzentrationen waren die Produktionsraten von Acetat und Butyrat erniedrigt, während die Propionat-Produktionsrate bei höheren Dosen vermindert war. Bei Metronidazol-Gabe war die Butyratbildung fast vollständig unterbunden. In ähnlicher Weise wurde die SCFA-Produktion durch die alleinige pH-Absenkung vermindert, wobei dies insbesondere mit einer Hemmung der Azetatbildung einherging. Bei saurem pH war der Metronidazol-Effekt nicht wesentlich verändert. Das Cositec-System stellt eine gut geeignete Technik zur Untersuchung von Antibiotikaeffekten auf den Dickdarmstoffwechsel unter definierten Bedingungen dar. Die Ergebnisse zeigen, dass Vancomycin und Metronidazol den mikrobiellen Dickdarmstoffwechsel in erheblichem Maße beeinträchtigen. Eine Übertragung dieser In-vitro-Ergebnisse auf In-vivo-Verhältnisse könnte zu einem größeren Verständnis der unter Vancomycin- und Metronidazol-Anwendung beobachteten Störungen der Dickdarmfunktion beitragen.

References

  • 1 Cleary R K. Clostridium difficile-associated diarrhea and colitis. Clinical manifestations, diagnosis, and treatment.  Dis Colon Rectum. 1998;  41 1435-1449
  • 2 Hove H, Tvede M, Mortensen P B. Antibiotic-associated diarrhoea, Clostridium difficile and short chain fatty acids.  Scand J Gastroenterol. 1996;  31 688-693
  • 3 Bartlett J G. Antimicrobial agents implicated in Clostridium difficile toxin-associated diarrhea or colitis.  J Hopkins Med J. 1981;  149 6-9
  • 4 Aronsson B, Möllby R, Nord C E. Antimicrobial agents and Clostridium difficile in acute enteric disease: Epidemiological data from Sweden, 1980-1982.  J Infect Dis. 1985;  151 476-481
  • 5 Nord C E, Edlund C. Impact of antimicrobial agents on human intestinal microflora.  J Chemother. 1990;  2 218-237
  • 6 Gerding D N. Treatment of Clostridium difficile-associated diarrhea and colitis.  Curr Top Microbiol Immunol. 2000;  250 127-139
  • 7 Andréjak M, Schmit J L, Tondriaux A. The clinical significance of antibiotic-associated pseudomembranous colitis in the 1990 s.  Drug Safety. 1991;  6 339-349
  • 8 Aronsson B, Möllby R, Nord C E. Occurence of toxin-producing Clostridium difficile in antibiotic-associated diarrhea in Sweden.  Med Microbiol Immunol. 1981;  170 27-35
  • 9 Devenyi A G. Antibiotic-induced colitis.  Semin Pediatr Surg. 1995;  4 215-220
  • 10 Mortensen P B, Clausen M R. short chain fatty acids in the human colon: Relation to gastrointestinal health and disease.  Scand J Gastroenterol. 1996;  216 (Suppl.) 132-148
  • 11 Surawicz C M, Elmer G W, Speelman P. et al . Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study.  Gastroenterology. 1989;  96 981-989
  • 12 Edwards C A, Duerden B I, Read N W. Effect of clindamycin on the ability of a continous culture of colonic bacteria to ferment carbohydrate.  Gut. 1986;  27 411-417
  • 13 Bartlett J G. Clostridium difficile: History of it’s role as an enteric pathogen and the current state of knowledge about the organism.  Clin Infect Dis. 1994;  18 (Suppl. 4) 265-272
  • 14 Cherry R D, Portnoy D, Jabbari M. Metronidazole: An alternate therapy for antibiotic-associated colitis.  Gastroenterology. 1982;  82 849-851
  • 15 Teasley D G, Gerding D N, Olson M M. et al . Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhoea and colitis.  Lancet. 1983;  2 1043-1046
  • 16 Cleary R K, Grossmann R, Fernandez F B. et al . Metronidazole may inhibit intestinal colonization with Clostridium difficile.  Dis Colon Rectum. 1998;  41 464-467
  • 17 Fekety R, Silva J, Toshniwal R, Allo M. et al . Antibiotic-associated colitis: Effects of antibiotics on Clostridium difficile and the disease in hamsters.  Rev Infect Diseases. 1979;  1 386-397
  • 18 Thomson G, Clark A, Hare K. et al . Pseudomembranous colitis after treatment with metronidazole.  BMJ. 1981;  282 864-865
  • 19 Bingley P J, Harding G M. Clostridium difficile colitis following treatment with metronidazole and vancomycin.  Postgrad Med J. 1987;  63 993-994
  • 20 Edwards D I, Knight R C, Zahoor A. DNA damage induced by reductively activated nitroimidazoles - pH effects.  Int J Radiat Oncol Biol Phys. 1986;  12 1207-1209
  • 21 Breves G, Dreyer J, Oslage H J. In vitro-studies on microbial hindgut metabolism in pigs.  Anim Physiol Anim Nutr. 1991;  22 (Suppl.) 89-92
  • 22 Czerkawski J W, Breckenridge G. Design and development of a long-term rumen simulation technique (Rusitec).  Br J Nutr. 1977;  38 371-384
  • 23 Stück K, Faul K, Hylla S. et al . The application of a semi-continuous colon simulation technique (Cositec) for studying the effects of clindamycin on microbial hindgut metabolism.  Z Gastroenterol. 1995;  33 241-246
  • 24 Fekety R, Silva J, Kaufmann C. et al . Treatment of antibiotic-associated Clostridium difficile colitis with oral vancomycin: Comparison of two dosage regimens.  Am J Med. 1989;  86 15-19
  • 25 Delmée M, Warny M. Clostridium difficile colitis: Recent therapeutical and immunological considerations.  Acta Gastroenterol Belg. 1995;  58 313-317
  • 26 Casetta A, Bingen E, Lambert-Zechovsky N. La vancomycine en 1991: Actualité et perspectives.  Path Biol. 1991;  39 700-708
  • 27 Wilhelm M P. Vancomycin.  Mayo Clin Proc. 1991;  1165-1170
  • 28 Watanakunakorn C. Mode of action and in-vitro activity of vancomycin.  J Antimicrob Chemother. 1984;  14 (Suppl. D) 7-18
  • 29 Dion Y M, Richards G K, Prentis J J. et al . The influence of oral versus parenteral properative metronidazole on sepsis following colon surgery.  Ann Surg. 1980;  192 221-226
  • 30 Krook A, Lindström B, Kjellander J. Relation between concentrations of metronidazole and Bacteroides spp. in faeces of patients with Crohn’s disease and healthy individuals.  J Clin Pathol. 1981;  34 645-650
  • 31 Dixon W J. BMDP Statistical Software Manual. Los Angeles; University Press of California 1992
  • 32 Mortensen P B, Hove H, Clausen M R. et al . Fermentation to short chain fatty acids and lactate in human faecal batch cultures. Intra- and inter-individual variations versus variations caused by changes in fermented saccharides.  Scand J Gastroenterol. 1991;  26 1285-1294
  • 33 Gorbach S L. Intestinal microflora.  Gastroenterology. 1971;  60 1110-1129
  • 34 Lundstrom T S, Sobel J D. Vancomycin, trimethoprim-sulfamethoxazole, and rifampin.  Infect Dis Clin North Am. 1995;  9 747-767
  • 35 Mendelin K. In vitro investigations on the effects of ampicillin and cephalexin on colonic fermentation. Thesis, University of Gießen, Germany; 1998
  • 36 Roediger W EW. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.  Gut. 1980;  21 793-798
  • 37 Cummings J H, Englyst H N. Fermentation in the human large intestine and the available substrates.  Am J Clin Nutr. 1987;  45 1243-1255
  • 38 Scheppach W, Sommer H, Kirchner T. et al . Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis.  Gastroenterology. 1992;  103 51-56
  • 39 Stein J, Zores M, Schroder O. Short chain fatty acid (SCFA) uptake into Caco-2 cells by a pH dependent and carrier mediated transport mechanism.  Eur J Nutr. 2000;  39 121-125
  • 40 Roediger W EW. Bacterial short chain fatty acids and mucosal diseases of the colon.  Br J Surg. 1988;  75 346-348
  • 41 Scheppach W, Christl S U, Bartram H -P. et al . Effects of short chain fatty acids on the inflamed colonic mucosa.  Scand J Gastroenterol. 1997;  32 (Suppl. 222) 53-57
  • 42 Russell J B, Sharp W M, Baldwin R L. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen.  J Anim Sci. 1979;  48 251-255
  • 43 Perman J A, Modler S, Olson A C. Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora.  J Clin Invest. 1981;  67 643-650
  • 44 Edwards C A, Duerden B I, Read N W. The effects of pH on colonic bacteria grown in continuous culture.  J Med Microbiol. 1985;  19 169-180
  • 45 Mallett A K, Bearne C A, Rowland I R. The influence of incubation pH on the activity of rat and human gut flora enzymes.  J Appl Bacteriol. 1989;  66 433-437

Address for correspondence

Prof. Dr. Gerhard Breves

Department of Physiology
School of Veterinary Medicine

Bischofsholer Damm 15/102

30173 Hannover

Germany

Email: gerhard.breves@tiho-hannover.de

    >