Int J Sports Med 2002; 23(1): 22-27
DOI: 10.1055/s-2002-19267
Training and Testing

© Georg Thieme Verlag Stuttgart · New York

Effect of Ramp Slope on Ventilation Thresholds and V˙O2peak in Male Cyclists

S.  B.  Weston1 , A.  B.  Gray1 , D.  A.  Schneider1 , G.  C.  Gass1
  • 1School of Physiotherapy and Exercise Science, Griffith University, Gold Coast, Queensland, Australia
Further Information

Publication History

April 30, 2001

Publication Date:
20 December 2001 (online)

Abstract

This study investigated the effect of 10 W · min-1 (Slow ramp, SR), 30 W · min-1 (Medium ramp, MR) and 50 W · min-1 (Fast ramp, FR) exercise protocols on assessments of the first (VT1) and second (VT2) ventilation thresholds and peak oxygen uptake (V˙O2peak) in 12 highly-trained male cyclists (mean ± SD age = 26 ± 6 yr). Expired gas sampled from a mixing chamber was analyzed on-line and VT1 and VT2 were defined as two break-points in 20-s-average plots of pulmonary ventilation (V˙E), ventilatory equivalents for O2 (V˙E/V˙O2) and CO2 (V˙E/V˙CO2), and fractions of expired O2 (FEO2) and CO2 (FECO2). Arterialized-venous blood samples were analyzed for blood-gas and acid-base status. V˙O2peak was significantly lower (p < 0.05) for SR (4.65 ± 0.53 l · min-1) compared to MR (4.89 ± 0.56 l · min-1) and FR (4.88 ± 0.57 l · min-1) protocols. CO2 output and blood PCO2 were lower (p < 0.05), and V˙E/V˙CO2 was higher (p < 0.05), above VT1 for SR compared to MR and FR protocols. No significant differences were observed among the protocols for V˙O2, % V˙O2peak, V˙E, plasma lactate ([La-]) and blood hydrogen ion concentration ([H+]), and heart rate (HR) values at VT1 or VT2. The work rate (WR) measured at VT1, VT2 and V˙O2peak increased (p < 0.05) with steeper ramp slopes. It was concluded that, in highly-trained cyclists, assessments of VT1 and VT2 are independent of ramp rate (10, 30, 50 W · min-1) when expressed as V˙O2, % V˙O2peak, V˙E, plasma [La-], blood [H+] and HR values, whereas V˙O2peak is lower during 10 W · min-1 compared to 30 and 50 W · min-1 ramp protocols. In addition, the WR measured at VT1, VT2 and V˙O2peak varies with the ramp slope and should be utilized cautiously when prescribing training or evaluating performance.

References

  • 1 Ahmaidi S, Hardy J M, Varray A, Collomp K, Mercier J, Prefault C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes.  Eur J Appl Physiol. 1993;  66 31-36
  • 2 Babcock M A, Paterson D H, Cunningham D A. Effects of endurance training on gas exchange kinetics of older men.  Med Sci Sports Exerc. 1994;  26 447-452
  • 3 Bangsbo J, Johansen L, Graham T, Saltin B. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.  J Physiol. 1993;  462 115-133
  • 4 Campbell M E, Hughson R L, Green H J. Continuous increase in blood lactate concentration during different ramp exercise protocols.  J Appl Physiol. 1989;  66 1104-1107
  • 5 Davis J A, Whipp B J, Lamarra N, Huntsman D J, Frank N, Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test.  Med Sci Sports Exerc. 1982;  14 339-343
  • 6 Dill D B, Costill D L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration.  J Appl Physiol. 1974;  37 247-248
  • 7 Donovan C M, Brooks G A. Endurance training affects lactate clearance, not lactate production.  J Appl Physiol. 1983;  244 E83-E92
  • 8 Fortney S M, Vroman N B. Exercise, performance and temperature control: temperature regulation during exercise and implications for sports performance and training.  Sports Med. 1985;  2 8-20
  • 9 Fry R W, Morton A R, Keast D. Cautions with the use of data from incremental work-rate tests for the prescription of work rates for interval training.  Sports Med, Training and Rehab. 1991;  3 131-145
  • 10 Hansen J E, Casaburi R, Cooper D M, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise.  Eur J Appl Physiol. 1988;  57 140-145
  • 11 Hughson R L, Green H J. Blood acid-base and lactate relationships studied by ramp work tests.  Med Sci Sports Exerc. 1982;  14 297-302
  • 12 Hughson R L, Green H J, Sharratt M T. Gas exchange, blood lactate, and plasma catecholamines during incremental exercise in hypoxia and normoxia.  J Appl Physiol. 1995;  79 1134-1141
  • 13 Iwaoka K, Hatta R, Atomi Y, Miyashita M. Lactate, respiratory compensation thresholds, and distance running performance in runners of both sexes.  Int J Sports Med. 1988;  9 306-309
  • 14 Jones N L. Exercise testing in pulmonary evaluation: rationale, methods and the normal respiratory response to exercise.  N Engl J Med. 1975;  293 541-544
  • 15 Kowalchuk J M, Scheuermann B W. Acid-base balance: origin of plasma during exercise.  Can J Appl Physiol. 1995;  20 341-356
  • 16 Lucía A, Pardo J, DuraŽntez A, Hoyos J, Chicharro J L. Physiological differences between professional and elite road cyclists.  Int J Sports Med. 1998;  19 342-348
  • 17 Marsh A P, Martin P E. The association between cycling experience and preferred and most economical cadences.  Med Sci Sports Exerc. 1993;  25 1269-1274
  • 18 McLellan T. Ventilatory and plasma lactate response with different exercise protocols: a comparison of methods.  Int J Sports Med. 1985;  6 30-35
  • 19 McLellan T H, Skinner J S. Continuous and interval training, the aerobic and anaerobic thresholds and submaximal endurance performance.  Can J Appl Sport Sci. 1982;  7 S 225
  • 20 McLellan T H, Skinner J S. Submaximal endurance performance related to the ventilation thresholds.  Can J Appl Sport Sci. 1985;  10 81-87
  • 21 Peronnet F, Thibault G, Rhodes E C, McKenzie D C. Correlation between ventilatory threshold and endurance capability in marathon runners.  Med Sci Sports Exerc. 1987;  19 610-615
  • 22 Poole D C, Gaesser G A. Response of ventilatory and lactate thresholds to continuous and interval training.  J Appl Physiol. 1985;  58 1115-1121
  • 23 Ribiero J P, Yang J, Adams R P, Kuca B, Knutten H G. Effect of different exercise protocols on the determination of lactate and ventilator thresholds.  Brazilian J Med Biol Res. 1986;  19 109-117
  • 24 Scheuermann B W, Kowalchuk J M. Respiratory compensation, as evidenced by a declining arterial and end-tidal PCO2, is attenuated during fast ramp exercise functions. In: Semple SJG, Adams L, Whipp BJ (eds) Advances in Experimental Medicine and Biology. New York; New York Plenum Press 1995 393: 137-142
  • 25 Simon J, Young J L, Blood D K, Segal K R, Case R B, Gutin B. Plasma lacette and ventilation thresholds in trained and untrained cyclists.  J Appl Physiol. 1986;  60 777-781
  • 26 Sjøgaard G. Force-velocity curve for bicycle work. In: Asmussen E, Jørgensen K (eds) International Series on Biomechanics. Baltimore; University Park Press 1997 2A: 93-99
  • 27 Takaishi T, Ono T, Yasuda Y. Relationship between muscle fatigue and oxygen uptake during cycle ergometer exercise with different ramp slope increments.  Eur J Appl Physiol. 1992;  65 335-339
  • 28 Ward S A, Whipp B J. Influence of body CO2 stores on ventilatory-metabolic coupling during exercise. In: Honda Y, Miyamoto Y, Konno K, Widdicombe JG (eds) Control of Breathing and its Modelling Perspective. New York; Plenum Press 1992: 425-431
  • 29 Wasserman K, Hansen J E, Sue D Y, Whipp B J, Casaburi R. Principles of exercise testing and interpretation. Philadelphia; Lea and Febiger 1994
  • 30 Wasserman K, Whipp B J, Casaburi R, Golden M, Beaver W L. Ventilatory control during exercise in man.  Bull Europ Physiopath Resp. 1979;  15 27-47
  • 31 Wasserman K, Whipp B J, Koyal S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 32 Weston S B, Schneider D A. Sampling arterialised-venous blood from a dorsal-hand vein during exercise without compromising a competitive cycling position.  Aust J Sci Med Sport. 1996;  29 51-54
  • 33 Whipp B J. The slow component of O2 uptake kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1319-1326
  • 34 Whipp B J, Davis J A, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise.  J Appl Physiol. 1981;  50 217-221
  • 35 Whipp B J, Davis J A, Wasserman K. Ventilatory control of the “isocapnic buffering” region in rapidly-incremental exercise.  Respir Physiol. 1989;  76 357-368
  • 36 Yoshida T. Gas exchange responses to ramp exercise.  Ann of Physiol Anthrop. 1990;  9 167-173
  • 37 Zhang Y, Johnson M C, Chow N, Wasserman K. Effect of exercise testing protocol on parameters of aerobic function.  Med Sci Sports Exerc. 1991;  23 625-630
  • 38 Zhang Y, Johnson M C, Chow N, Wasserman K. The role of fitness on V˙O2 and V˙CO2 kinetics in response to proportional step increases in work rate.  Eur J Appl Physiol. 1991;  63 94-100
  • 39 Zoladz J A, Duda K, Majerczak J. V˙O2 power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedalling rates: relationship to venous lactate accumulation and blood acid-base balance.  Physiol Res. 1998;  47 427-438
  • 40 Zoladz J A, Rademaker A CHJ, Sargeant A J. Human muscle power generating capability during cycling at different pedalling rates.  Exp Physiol. 2000;  85 117-124

S. B. Weston

School of Physiotherapy and Exercise Science · Griffith University

Gold Coast · PMB 50, Gold Coast Mail Centre · QLD 9726 · Australia ·

Phone: +61 (7 5594) 8531

Fax: +61 (7 5594) 8674

Email: s.weston@mailbox.gu.edu.au

    >