Int J Sports Med 2002; 23(2): 99-104
DOI: 10.1055/s-2002-20126
Training and Testing
© Georg Thieme Verlag Stuttgart · New York

Coordination in Front Crawl in Elite Triathletes and Elite Swimmers

G.  P.  Millet1 , D.  Chollet2 , S.  Chalies1 , J.  C.  Chatard3
  • 1 Laboratoire UPRES-EA ‘Sport, Performance, Santé’, Faculté des Sciences du Sport, Montpellier, France
  • 2 Faculté des Sciences du Sport, Université de Rouen, Mont-Saint Aignant, France
  • 3 Laboratoire de Physiologie, GIP exercice, Faculté de Médecine, Université de Saint-Etienne, Saint-Etienne cedex 2, France
Further Information

Publication History

May 17, 2001

Publication Date:
13 February 2002 (online)

Abstract

The aim of this study was to compare the arm coordination in 19 elite triathletes and 15 elite swimmers at six different velocities between 80 % and 100 % of their maximal velocity (Vmax). The different phases of the stroke (A: entry; B: pull; C: push; D: recovery) were identified by video analysis. An index of coordination (IdC) was calculated. It was the time that separated the beginning of the propulsive phase of one arm from the end of the propulsive phase of the other arm. IdC allows to express the mode of arm coordination: catch-up, IdC < 0; opposition, IdC = 0; superposition, IdC > 0. Between 80 % and 98 % Vmax, elite triathletes showed similar increases in IdC than swimmers (from -8.8 % to 2.6 % vs from -8.6 % to 0.3 %) switching from a catch-up to a superposition coordination. Between 88 % and Vmax, triathletes increased the propulsive phase (B+C) less (p < 0.01) than swimmers (3.4 % vs 8.5 %) and increased the recovery phase (0.8 %) when swimmers reduced it (-1.6 %). Between V5 and Vmax, both triathletes and swimmers had a significant (p < 0.01) difference in IdC change (-1.7 % vs 2.3 %). Moreover, triathletes reduced the propulsive phase when swimmers increased it (-0.6 % vs 3.2 %). The lower velocity of the triathletes was associated to a shorter stroke length when compared to the swimmers (1.70 m vs 2.15 m at Vmax). The stroke rates were not statistically different (55.1 vs 51.2 stroke × min-1 at Vmax). Thus, monitoring IdC and stroke length is recommended for triathletes mainly at maximal velocity.

References

  • 1 Chatard J C, Collomp C, Maglischo E, Maglischo C. Swimming skill and stroking characteristics of front crawl swimmers.  Int J Sports Med. 1990;  11 156-161
  • 2 Chatard J C, Senegas X, Selles M, Dreanot P, Geyssant A. Wet suit effect: a comparison between competitive swimmers and triathletes.  Med Sci Sports Exerc. 1995;  27 580-586
  • 3 Chatard J C, Chollet D, Millet G. Performance and drag during drafting swimming in highly trained triathletes.  Med Sci Sports Exerc. 1998;  30 1276-1280
  • 4 Chollet D, Chalies S, Chatard J C. A new index of coordination for the crawl: description and usefulness.  Int J Sports Med. 2000;  21 54-59
  • 5 Chollet D, Hue O, Auclair F, Millet G, Chatard J C. The effects of drafting on stroking variations during swimming in elite male triathletes.  Eur J Appl Physiol. 2000;  82 413-417
  • 6 Counsilman J E. Hand speed and acceleration.  Swimming technique. 1981;  18 22-26
  • 7 Costill D L, Maglischo E W, Richardson A B. Swimming. Oxford; Blackwell Scientific Publications 1992: 71-73
  • 8 Craig A BJ, Pendergast D R. Relationships of stroke rate, distance per stroke, and velocity in competitive swimming.  Med Sci Sports. 1979;  11 278-283
  • 9 Grimston S K, Hay J G. Relationships among anthropometric and stroking characteristics of college swimmers.  Med Sci Sports Exerc. 1986;  18 60-68
  • 10 Hollander A P, De Groot G, Van Ingen Schenau G J, Kahman R, Toussaint H M. Contributions of the legs to propulsion in front crawl swimming. In: Ungerechts BE, Wilke K, Reischle K (eds) Swimming Science V. Champaign; Human Kinetics 1988: 39-43
  • 11 Kennedy P K, Brown P L, Chengalur S C, Nelson R C. Analysis of male and female Olympic swimmers in the 100-meter events.  Int J Sport Biomech. 1990;  6 187-197
  • 12 Keskinen K L, Keskinen O P. Stroke performance in swimmers and triathlonists during a 100-m all-out front crawl swim.  In: Proceedings of first annual congress of sport science. Nice; France 1996: 420-421
  • 13 Keskinen K L, Komi P V. Stroking characteristics of front crawl swimming during exercise.  J Appl Biomech. 1993;  9 219-226
  • 14 Kolmogorov S V, Rumyantseva O A, Gordon B J, Cappaert J M. Hydrodynamic characteristics of competitive swimmers of different genders and performance levels.  J Appl Biomech. 1997;  13 88-97
  • 15 Kohrt W M, Morgan D W, Bates B, Skinner J S. Physiological responses of triathletes to maximal swimming, cycling, and running.  Med Sci Sports Exerc. 1987;  19 51-55
  • 16 Maglischo C W, Maglischo E W, Higgins J, Hinricks R, Luedtke D, Schleihauf R E, Thayer A. A biomechanical analysis of the U.S. Olympic freestyle distance swimmers. In: Ungerechts BE, Wilke K, Reischle K (eds) Swimming Science V. Champaign; Human Kinetics 1988: 351-359
  • 17 Maglischo E W. Swimming even faster. Montain view, CA; Mayfield Publishing Company 1993: 363-388
  • 18 Malvela M T, Keskinen K L, Hautamäki H T, Mero A A. Intracycle variation of velocity in three groups of highly trained front crawl swimmers.  In: Proceedings of the XV congress of I.S.B. Jyvaskyla, Finland; 1995: 586-587
  • 19 Miura H, Kitagawa K, Ishiko T. Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon.  Int J Sports Med. 1997;  18 276-280
  • 20 Monteil K M, Rouard A H, Dufour A B, Cappaert J M, Troup J P. Front crawl stroke phases: discriminating kinematic and kinetic parameters. In: Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and Medicine in Swimming VII. London; E & FN Spon 1996: 45-51
  • 21 Nuber G W, Jobe F W, Perry J, Moynes D R, Antonelli D. Fine wire electromyography analysis of muscles of the shoulder during swimming.  Am J Sports Med. 1986;  14 7-11
  • 22 Pelayo P, Sidney M, Kherif T, Chollet D, Tourny C. Stroking characteristics in freestyle swimming and relationships with anthropometric characteristics.  J Appl Biomech. 1996;  12 197-206
  • 23 Persyn U, Daly D, Vervaecke H, Van Tilborgh L, Verhetsel D. Profiles of competitors using different patterns in front crawl events. In: Hollander A, Huijing P, de Groot G (eds) Biomechanics and Medicine in Swimming. Amsterdam, Netherlands; 1983: 323-328
  • 24 Rouard A H, Billat R P. Influences of sex and level of performance on freestyle stroke: an electromyography and kinematic study.  Int J Sports Med. 1990;  11 150-155
  • 25 Rouard A H, Schleihauf R E, Troup J P. Hand forces and phases in freestyle stroke. In: Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and Medicine in Swimming VII. London; E & FN Spon 1996: 34-44
  • 26 Schleihauf R E. A hydrodynamic analysis of swimming propulsion. In: Terauds J, Clarys JP (eds) Swimming III. Baltimore; University Park Press 1979: 70-109
  • 27 Schleihauf R, Higgins J, Hinricks R, Luedtke D, Maglischo C, Maglischo E, Thayer A. Models of aquatic skill sprint front crawlstroke.  NZL J Sports Med. 1986;  14 6-12
  • 28 Toussaint H M, Bruinink L, Coster R, Looze M D, Van Rossem B, Van Veenen R, Groot G D. Effect of a triathlon wet suit on drag during swimming.  Med Sci Sports Exerc. 1989;  21 325-328
  • 29 Toussaint H M. Differences in propelling efficiency between competitive and triathlon swimmers.  Med Sci Sports Exerc. 1990;  22 409-415
  • 30 Toussaint H M, Beek P J. Biomechanics of competitive front crawl swimming.  Sports Med. 1992;  13 8-24

G. Millet

Laboratoire UPRES-EA “Sport, Performance, Santé”, Faculté des Sciences du Sport

700 Avenue du pic Saint Loup · 34090 Montpellier · France

Phone: (+33) 467 415 749

Fax: (+33) 467 415 708

Email: g.millet@staps.univ-montp1.fr

    >