Semin Liver Dis 2002; 22(3): 291-302
DOI: 10.1055/s-2002-34506
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Immunopathogenesis of Primary Biliary Cirrhosis

Akiyoshi Nishio1 , Emmet B. Keeffe2 , M. Eric Gershwin3
  • 1Department of Gastroenterology, Tenri Hospital, Nara, Japan
  • 2Liver Transplant Program,Stanford University Medical Center, Palo Alto, California
  • 3Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California at Davis, Davis, California
Further Information

Publication History

Publication Date:
02 October 2002 (online)

ABSTRACT

Although the autoantigens of antimitochondrial antibodies (AMA) have been defined and epitope mapped for both autoreactive B and T cells, the pathogenesis of primary biliary cirrhosis (PBC) still remains a mystery. The data gathered so far address several important aspects of this intriguing puzzle. First, biliary epithelial cells (BECs) seem to be immunologically active because they express molecules such as major histocompatibility complex (MHC) antigens, and adhesion and costimulatory molecules. Second, although pyruvate dehydrogenase complex (PDC)-E2, the major autoantigen in PBC, is upregulated in BECs when examined immunohistochemically, this abnormal staining seems to be secondary to immune complexes of AMA bound to PDC-E2 present in the BECs. Third, in addition to CD4+ T cells, CD8+ T cells also recognize the inner lipoyl domain of PDC-E2. Fourth, modification of mitochondrial antigens by xenobiotics may lead to the induction of the disease. These findings help to clarify the pathogenic mechanism of PBC and suggest that (l) induction may be secondary to a primary response to a xenobiotic that is normally metabolized in an estrogen-dependent pathway and (2) pathology is mediated by and orchestrated by a highly directed and specific CD4, CD8 and autoantibody response to the lipoyl domain of the mitochondrial autoantigens, with tissue destruction based on the immunoglobulin A (IgA) receptor, apoptosis, and the mucosal organization of biliary and salivary duct cells.

REFERENCES

  • 1 Atkinson M A, Bowman M A, Campbell L. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes.  J Clin Invest . 1994;  94 2125-2129
  • 2 Oomes P G, Jacobs B C, Hazenberg M P. Anti-GM1 IgG antibodies and Campylobacter bacteria in Guillain-Barre syndrome: Evidence of molecular mimicry.  Ann Neurol . 1995;  38 170-175
  • 3 Wucherpfennig K W, Strominger J L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein.  Cell . 1995;  80 695-705
  • 4 Barnaba V, Sinigaglia F. Molecular mimicry and T cell-mediated autoimmune disease.  J Exp Med . 1997;  185 1529-1531
  • 5 Gershwin M E, Mackay I R, Sturgess A, Coppel R L. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis.  J Immunol . 1987;  138 3525-3531
  • 6 Coppel R L, McNeilage L J, Surh C D. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase.  Proc Natl Acad Sci USA . 1988;  85 7317-7321
  • 7 Fussey S P, Guest J R, James O F. Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis.  Proc Natl Acad Sci USA . 1988;  85 8654-8658
  • 8 Van de Water J, Fregeau D, Davis P. Autoantibodies of primary biliary cirrhosis recognize dihydrolipoamide acetyltransferase and inhibit enzyme function.  J Immunol . 1988;  141 2321-2324
  • 9 Fregeau D R, Davis P A, Danner D J. Antimitochondrial antibodies of primary biliary cirrhosis recognize dihydrolipoamide acyltransferase and inhibit enzyme function of the branched chain alpha-ketoacid dehydrogenase complex.  J Immunol . 1989;  142 3815-3820
  • 10 Surh C D, Danner D J, Ahmed A. Reactivity of primary biliary cirrhosis sera with a human fetal liver cDNA clone of branched-chain alpha-keto acid dehydrogenase dihydrolipoamide acyltransferase, the 52 kD mitochondrial autoantigen.  Hepatology . 1989;  9 63-68
  • 11 Surh C D, Roche T E, Danner D J. Antimitochondrial autoantibodies in primary biliary cirrhosis recognize cross-reactive epitope(s) on protein X and dihydrolipoamide acetyltransferase of pyruvate dehydrogenase complex.  Hepatology . 1989;  10 127-133
  • 12 Fregeau D R, Roche T E, Davis P A. Primary biliary cirrhosis. Inhibition of pyruvate dehydrogenase complex activity by autoantibodies specific for E1 alpha, a non-lipoic acid containing mitochondrial enzyme.  J Immunol . 1990;  144 1671-1676
  • 13 Fregeau D R, Prindiville T, Coppel R L. Inhibition of alpha-ketoglutarate dehydrogenase activity by a distinct population of autoantibodies recognizing dihydrolipoamide succinyltransferase in primary biliary cirrhosis.  Hepatology . 1990;  11 975-981
  • 14 Surh C D, Coppel R, Gershwin M E. Structural requirement for autoreactivity on human pyruvate dehydrogenase-E2, the major autoantigen of primary biliary cirrhosis. Implication for a conformational autoepitope.  J Immunol . 1990;  144 3367-3374
  • 15 Leung P S, Chuang D T, Wynn R M. Autoantibodies to BCOADC-E2 in patients with primary biliary cirrhosis recognize a conformational epitope.  Hepatology . 1995;  22 505-513
  • 16 Moteki S, Leung P S, Dickson E R. Epitope mapping and reactivity of autoantibodies to the E2 component of 2-oxoglutarate dehydrogenase complex in primary biliary cirrhosis using recombinant 2-oxoglutarate dehydrogenase complex.  Hepatology . 1996;  23 436-444
  • 17 Dubel L, Tanaka A, Leung P S. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase-binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis.  Hepatology . 1999;  29 1013-1018
  • 18 Fussey S P, Ali S T, Guest J R. Reactivity of primary biliary cirrhosis sera with Escherichia coli dihydrolipoamide acetyltransferase (E2p): characterization of the main immunogenic region.  Proc Natl Acad Sci USA . 1990;  87 3987-3991
  • 19 Leung P S, Iwayama T, Coppel R L, Gershwin M E. Site-directed mutagenesis of lysine within the immunodominant autoepitope of PDC-E2.  Hepatology . 1990;  12 1321-1328
  • 20 Quinn J, Diamond A G, Palmer J M. Lipoylated and unlipoylated domains of human PDC-E2 as autoantigens in primary biliary cirrhosis: significance of lipoate attachment.  Hepatology . 1993;  18 1384-1391
  • 21 Bandin O, Couvalin J, Poupon R. Specificity and sensitivity of gp210 autoantibodies detected using an enzyme-linked immunosorbent assay and a synthetic polypeptide in the diagnosis of primary biliary cirrhosis.  Hepatology . 1996;  23 1020-1024
  • 22 Wesierska-Gadek J, Honenauer H, Hitchman E, Penner E. Autoantibodies against nucleoporin p62 constitute a novel marker of primary biliary cirrhosis.  Gastroenterology . 1996;  110 840-847
  • 23 Szostecki C, Krippner H, Penner E, Bautz F A. Autoimmune sera recognize a 100 kD nuclear protein antigen (sp-100).  Clin Exp Immunol . 1987;  68 108-116
  • 24 Courvalin J C, Lassoued K, Worman H J, Blobel G. Identification and characterization of autoantibodies against the nuclear envelope lamin B receptor from patients with primary biliary cirrhosis.  J Exp Med . 1990;  172 961-967
  • 25 Krams S M, Van de Water J, Coppel R L. Analysis of hepatic T lymphocyte and immunoglobulin deposits in patients with primary biliary cirrhosis.  Hepatology . 1990;  12 306-313
  • 26 Meuer S C, Moebius U, Manns M M. Clonal analysis of human T lymphocytes infiltrating the liver in chronic active hepatitis B and primary biliary cirrhosis.  Eur J Immunol . 1988;  18 1447-1452
  • 27 Van de Water J, Ansari A A, Surh C D. Evidence for the targeting by 2-oxo-dehydrogenase enzymes in the T cell response of primary biliary cirrhosis.  J Immunol . 1991;  146 89-94
  • 28 Shimoda S, Nakamura M, Ishibashi H. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases.  J Exp Med . 1995;  181 1835-1845
  • 29 Shimoda S, Van de Water J, Ansari A. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis.  J Clin Invest . 1998;  102 1831-1840
  • 30 Van de Water J, Ansari A, Prindiville T. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis.  J Exp Med . 1995;  181 723-733
  • 31 Ichiki Y, Shimoda S, Hara H. Analysis of T-cell receptor beta of the T-cell clones reactive to the human PDC-E2 163-176 peptide in the context of HLA-DR53 in patients with primary biliary cirrhosis.  Hepatology . 1997;  26 728-733
  • 32 Kita H, Lian Z X, Van de Water J. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells.  J Exp Med . 2002;  195 113-123
  • 33 Wucherpfennig K W, Catz I, Hausmann S. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes.  J Clin Invest . 1997;  100 1114-1122
  • 34 Hillaire S, Boucher E, Calmus Y. Effects of bile acids and cholestasis on major histocompatibility complex class I in human and rat hepatocytes.  Gastroenterology . 1994;  107 781-788
  • 35 Ballardini G, Mirakian R, Bianchi F B. Aberrant expression of HLA-DR antigens on bile duct epithelium in primary biliary cirrhosis: relevance to pathogenesis.  Lancet . 1984;  2 1009-1013
  • 36 Adams D H, Hubscher S G, Shaw J. Increased expression of intercellular adhesion molecule 1 on bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis.  Hepatology . 1991;  14 426-431
  • 37 Ayres R C, Neuberger J M, Shaw J. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines.  Gut . 1993;  34 1245-1249
  • 38 Dienes H P, Lohse A W, Gerken G. Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis.  Virchows Arch . 1997;  431 119-124
  • 39 Yasoshima M, Nakanuma Y, Tsuneyama K. Immunohistochemical analysis of adhesion molecules in the micro-environment of portal tracts in relation to aberrant expression of PDC-E2 and HLA-DR on the bile ducts in primary biliary cirrhosis.  J Pathol . 1995;  175 319-325
  • 40 Schwartz R. Costimulation of T-lymphocytes: The role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy.  Cell . 1992;  71 1065-1068
  • 41 Liu Y, Wenger R, Zhao M, Nielsen P. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes.  J Exp Med . 1997;  185 251-262
  • 42 Tsuneyama K, Harada K, Yasoshima M. Expression of co-stimulatory factor B7-2 on the intrahepatic bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis: An immunohistochemical study.  J Pathol . 1998;  186 126-130
  • 43 Leon M P, Bassendine M F, Wilson J L. Immunogenicity of biliary epithelium: Investigation of antigen presentation to CD4+ T cells.  Hepatology . 1996;  24 561-567
  • 44 Yashoshima M, Kono N, Sugahara H. Increased expression of interleukin-6 and tumor necrosis factor-α in pathologic biliary epithelial cells: In situ and culture study.  Lab Invest . 1998;  78 89-100
  • 45 Jelnick D, Lipsky P. Enhancement of human B-cell proliferation and differentiation by tumor necrosis factor alpha and interleukin 1.  J Immunol . 1987;  139 2970-2976
  • 46 Matsumoto K, Fujii H, Michalopoulos G. Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: Interleukin-6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro.  Hepatology . 1994;  20 376-382
  • 47 Gonzalez-Amaro R, Garcis-Monzon C, Garcia-Buey L. Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis.  J Exp Med . 1994;  179 841-848
  • 48 Mano Y, Ishii M, Okamoto H. Effect of tumor necrosis factor alpha on intrahepatic bile duct epithelial cells of rat liver.  Hepatology . 1996;  23 1602-1607
  • 49 Joplin R, Lindsay J G, Hubscher S G. Distribution of dihydrolipoamide acetyltransferase (E2) in the liver and portal lymph nodes of patients with primary biliary cirrhosis: an immunohistochemical study.  Hepatology . 1991;  14 442-447
  • 50 Van de Water J, Turchany J, Leung P S. Molecular mimicry in primary biliary cirrhosis. Evidence for biliary epithelial expression of a molecule cross-reactive with pyruvate dehydrogenase complex-E2.  J Clin Invest . 1993;  91 2653-2664
  • 51 Joplin R, Wallace L, Lindsay J. The human biliary epithelial cell plasma membrane antigen in primary biliary cirrhosis: Pyruvate dehydrogenase X.  Gastroenterology . 1996;  113 1727-1733
  • 52 Tsuneyama K, Van de water J, Leung P SC. Abnormal expression of the E2 component of the pyruvate dehydrogenase complex on the luminal surface of biliary epithelium occurs before major histocompatibility complex class II and BB1/B7 expression.  Hepatology . 1995;  21 1031-1037
  • 53 Van de Water J, Gerson L B, Ferrell L D. Immunohistochemical evidence of disease recurrence after liver transplantation for primary biliary cirrhosis.  Hepatology . 1996;  24 1079-1084
  • 54 Migliaccio C, Nishio A, Van de Water J. Monoclonal antibodies to mitochondrial E2 components define autoepitopes in primary biliary cirrhosis.  J Immunol . 1998;  161 5157-5163
  • 55 Harada K, Sudo Y, Kono N. In situ nucleic acid detection of PDC-E2, BCOADC-E2, OGDC-E2, PDC-E1alpha, BCOADC-E1alpha, OGDC-E1, and the E3 binding protein (protein X) in primary biliary cirrhosis.  Hepatology . 1999;  30 36-45
  • 56 Danpure C J. The molecular basis of alanine:glyoxylate aminotransferase mistargeting: the most common single cause of primary hyperoxaluria type I.  J Nephrol . 1998;  11 8-12
  • 57 Nishio A, Van de Water J, Leung P S. Comparative studies of antimitochondrial autoantibodies in sera and bile in primary biliary cirrhosis.  Hepatology . 1997;  25 1085-1089
  • 58 Migliaccio C, Van de Water J, Ansari A A. Heterogeneous response of antimitochondrial autoantibodies and bile duct apical staining monoclonal antibodies to pyruvate dehydrogenase complex E2: The molecule versus the mimic.  Hepatology . 2001;  33 792-801
  • 59 Odin J A, Huebert R C, Casciola-Rosen L. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis.  J Clin Invest . 2001;  108 223-232
  • 60 Medina J F, Martinez A, Vazquez J J, Prieto J. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis.  Hepatology . 1997;  25 12-17
  • 61 Kuroki T, Seki S, Kawakita N. Expression of antigens related to apoptosis and cell proliferation in chronic nonsuppurative destructive cholangitis in primary biliary cirrhosis.  Virchows Arch . 1996;  429 119-129
  • 62 Koga H, Sakisaka S, Ohishi M. Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis.  Hepatology . 1997;  25 1077-1084
  • 63 Harada K, Ozaki S, Gershwin M E, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis.  Hepatology . 1997;  26 1399-1405
  • 64 Faubion W A, Guicciardi M E, Miyoshi H. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas.  J Clin Invest . 1999;  103 137-145
  • 65 Parikh-Patel A, Gold E, Mackay I R, Gershwin M E. The geoepidemiology of primary biliary cirrhosis: contrasts and comparisons with the spectrum of autoimmune diseases.  Clin Immunol . 1999;  91 206-218
  • 66 Tsuji K, Watanabe Y, Van De Water J. Familial primary biliary cirrhosis in Hiroshima.  J Autoimmun . 1999;  13 171-178
  • 67 Tanaka A, Borchers A T, Ishibashi H. Genetic and familial considerations of primary biliary cirrhosis.  Am J Gastroenterol . 2001;  96 8-15
  • 68 Arriaga F, Ercilla G, Pares A. Association of HLA-DR3 antigen to disease with immunological components.  Sangre (Barc) . 1980;  25 430-437
  • 69 Gores G J, Moore S B, Fisher L D. Primary biliary cirrhosis: associations with class II major histocompatibility complex antigens.  Hepatology . 1987;  7 889-892
  • 70 Prochazka E J, Terasaki P I, Park M S. Association of primary sclerosing cholangitis with HLA-DRw52a.  N Engl J Med . 1990;  322 1842-1844
  • 71 Manns M P, Bremm A, Schneider P M. HLA DRw8 and complement C4 deficiency as risk factors in primary biliary cirrhosis.  Gastroenterology . 1991;  101 1367-1373
  • 72 Johnston D E, Kaplan M M, Miller K B. Histocompatibility antigens in primary biliary cirrhosis.  Am J Gastroenterol . 1987;  82 1127-1129
  • 73 Miyamori H, Kato Y, Kobayashi K, Hattori N. HLA antigens in Japanese patients with primary biliary cirrhosis and autoimmune hepatitis.  Digestion . 1983;  26 213-217
  • 74 Morling N, Dalhoff K, Fugger L. DNA polymorphism of HLA class II genes in primary biliary cirrhosis.  Immunogenetics . 1992;  35 112-116
  • 75 Begovich A B, Klitz W, Moonsamy P V. Genes within the HLA class II region confer both predisposition and resistance to primary biliary cirrhosis.  Tissue Antigens . 1994;  43 71-77
  • 76 Mella J G, Roschmann E, Maier K P, Volk B A. Association of primary biliary cirrhosis with the allele HLA-DPB1*0301 in a German population.  Hepatology . 1995;  21 398-402
  • 77 Underhill J A, Donaldson P T, Doherty D G. HLA DPB polymorphism in primary sclerosing cholangitis and primary biliary cirrhosis.  Hepatology . 1995;  21 959-962
  • 78 Seki T, Kiyosawa K, Ota M. Association of primary biliary cirrhosis with human leukocyte antigen DPB1*0501 in Japanese patients.  Hepatology . 1993;  18 73-78
  • 79 Selinger M J, Matloff D S, Kaplan M M. Gamma-glutamyl transpeptidase activity in liver disease: serum elevation is independent of hepatic GGTP activity.  Clin Chim Acta . 1982;  125 283-290
  • 80 Aitman T J, Todd J A. Molecular genetics of diabetes mellitus.  Baillieres Clin Endocrinol Metab . 1995;  9 631-656
  • 81 Jones D E, Watt F E, Grove J. Tumour necrosis factor-alpha promoter polymorphisms in primary biliary cirrhosis.  J Hepatol . 1999;  30 232-236
  • 82 Gordon M A, Oppenheim E, Camp N J. Primary biliary cirrhosis shows association with genetic polymorphism of tumour necrosis factor alpha promoter region.  J Hepatol . 1999;  31 242-247
  • 83 Zappala F, Grove J, Watt F E. No evidence for involvement of the interleukin-10 -592 promoter polymorphism in genetic susceptibility to primary biliary cirrhosis.  J Hepatol . 1998;  28 820-823
  • 84 Gregory W L, Daly A K, Dunn A N. Analysis of HLA-class-II-encoded antigen-processing genes TAP1 and TAP2 in primary biliary cirrhosis.  QJM . 1994;  87 237-244
  • 85 Graham A M, Dollinger M M, Howie S E, Harrison D J. Identification of novel alleles at a polymorphic microsatellite repeat region in the human NRAMP1 gene promoter: Analysis of allele frequencies in primary biliary cirrhosis.  J Med Genet . 2000;  37 150-152
  • 86 Vilagut L, Vila L, Vinas O. Cross reactivity of anti-Mycobacterium gornadae antibodies with the major mitochondrial autoantigens in primary biliary cirrhosis.  J Hepatol . 1994;  21 673-677
  • 87 O'Donohue J, Fidler H, Garcia-Barcelo M. Mycobacterial DNA not detected in liver sections from patients with primary biliary cirrhosis.  J Hepatol . 1998;  28 433-438
  • 88 Nishio A, Neuberger J M, Gershwin M E. Management of patients with primary biliary cirrhosis.  BioDrugs . 1999;  12 159-173
  • 89 Stemerowicz R, Hopf U, Moller B. Are antimitochondrial antibodies in primary biliary cirrhosis induced by R(rough)-mutants of enterobacteriaceae?.  Lancet . 1988;  2 1166-1170
  • 90 Hopf U, Moller B, Stemerowicz R. Relation between Escherichia coli R(rough)-forms in gut, lipid A in liver, and primary biliary cirrhosis.  Lancet . 1989;  2 1419-1422
  • 91 Burroughs A K, Rosenstein I J, Epstein O. Bacteriuria and primary biliary cirrhosis.  Gut . 1984;  25 133-137
  • 92 Butler P, Valle F, Hamilton-Miller J M. M2 mitochondrial antibodies and urinary rough mutant bacteria in patients with primary biliary cirrhosis and in patients with recurrent bacteriuria.  J Hepatol . 1993;  17 408-414
  • 93 Wadstrom T, Ljungh A, Willen R. Primary biliary cirrhosis and primary sclerosing cholangitis are of infectious origin! Gut .  2001;  49 454
  • 94 Olsson R, Bjornsson E, Backman L. Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers.  J Hepatol . 1998;  28 426-432
  • 95 Kolbert C P, Persing D H. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens.  Curr Opin Microbiol . 1999;  2 299-305
  • 96 Nilsson H O, Taneera J, Castedal M. Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis.  J Clin Microbiol . 2000;  38 1072-1076
  • 97 Hiramatsu K, Harada K, Tsuneyama K. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis.  J Hepatol . 2000;  33 9-18
  • 98 Tanaka A, Prindiville T P, Gish R. Are infectious agents involved in primary biliary cirrhosis?.  <~>A PCR approach. J Hepatol . 1999;  31 664-671
  • 99 Garry R F, Fermin C D, Hart D J. Detection of a human intracisternal A-type retroviral particle antigenically related to HIV.  Science . 1990;  250 1127-1129
  • 100 Mason A L, Xu L, Guo L. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders.  Lancet . 1998;  351 1620-1624
  • 101 Fox R I. Sjogren syndrome.  Curr Opin Rheumatol . 1995;  7 409-416
  • 102 Triger D R. Primary biliary cirrhosis: an epidemiological study.  BMJ . 1980;  281 772-775
  • 103 Chetwynd A, Diggle P, Jarner M. Evidence for spatial variation in risk and of spatial clustering in PBC.  Hepatology . 1999;  30 407A
  • 104 Medzhitov R, Janeway Jr A C. How does the immune system distinguish self from nonself?.  Semin Immunol . 2000;  12 185-344
  • 105 Powell J J, Van de Water J, Gershwin M E. Evidence for the role of environmental agents in the initiation or progression of autoimmune conditions.  Environ Health Perspect . 1999;  107(Suppl 5) 667-672
  • 106 Rose N R. Viral damage or molecular mimicry placing the blame in myocarditis.  Nat Med . 2000;  6 631-632
  • 107 Sinha A, Clatch R J, Stuck G. Isoflurane hepatotoxicity: a case report and review of the literature.  Am J Gastroenterol . 1996;  91 2406-2409
  • 108 Rao T, Richardson B. Environmentally induced autoimmune diseases: potential mechanisms.  Environ Health Perspect . 1999;  107(Suppl 5) 737-742
  • 109 Njoku D, Laster M J, Gong D H. Biotransformation of halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury.  Anesth Analg . 1997;  84 173-178
  • 110 Gut J, Christen U, Frey N. Molecular mimicry in halothane hepatitis: biochemical and structural characterization of lipoylated autoantigens.  Toxicology . 1995;  97 199-224
  • 111 Bourdi M, Chen W, Peter R M. Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis.  Chem Res Toxicol . 1996;  9 1159-1166
  • 112 Long S A, Quan C, Van de Water J. Immunoreactivity of organ mimetopes of the E2 component of pyruvate dehydrogenase: connecting xenbiotics with primary biliary cirrhosis.  J Immunol . 2001;  167 2956-2963
  • 113 Sasaki M, Ansari A, Pumford N. Comparative immunoreactivity of anti-trifluoroacetyl (TFA) antibody and anti-lipoic acid antibody in primary biliary cirrhosis: searching for a mimic.  J Autoimmun . 2000;  15 51-60
    >