Synthesis 2002(17): 2561-2578
DOI: 10.1055/s-2002-35626
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Nucleophilic Fluorination Reactions of Organic Compounds­ Using Deoxofluor and DAST

Rajendra P. Singh, Jean’ne M. Shreeve*
Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
Fax: +1(208)8859416; e-Mail: jshreeve@uidaho.edu;
Further Information

Publication History

Received 25 September 2002
Publication Date:
20 November 2002 (online)

Abstract

Selective fluorination of organic compounds continues to be a stimulating and exciting area of research. While a variety of fluorinating reagents and methodologies have been developed to fulfill the increasing demand for site selective fluorination of organic compounds, applications of Deoxofluor and DAST continue to be used widely. Our interest in applying synthetic methods for introducing fluorine or a fluorinated group into a large variety of organic compounds encouraged this review which highlights recent progress in fluorination reactions using Deoxofluor [bis(2-methoxyethyl)aminosulfur trifluoride] and DAST (diethylaminosulfur trifluoride) as key nucleophilic fluorinating reagents. This review covers the literature for fluorination reactions of organic compounds using Deoxofluor and DAST from January 1999 through July 2002.

  • 1 Introduction

  • 2 Synthesis of Deoxofluor [Bis(2-methoxyethyl)aminosulfur Trifluoride] and DAST (Diethylaminosulfur Trifluoride)

  • 3 Fluorination Reactions with Deoxofluor and DAST

  • 3.1 Alcohols, Amino Alcohols, and Diols

  • 3.2 Carbohydrates

  • 3.3 Aldehydes and Ketones

  • 3.4 Dicarbonyls

  • 3.5 Sulfides, Sulfoxides, Thioesters and Thiocarbonyls

  • 3.6 Carboxylic Acids and Acid Chlorides

  • 3.7 Glyoxal Hydrates and Anhydrous Glyoxals

  • 3.8 Epoxides (Oxiranes)

  • 3.9 Peptides

  • 3.10 Ketoximes

  • 4 Miscellaneous Reactions

  • 4.1 Synthesis of Functionalized Oxazolines and Oxazoles

  • 4.2 Synthesis of Amides from Carboxylic Acids

  • 4.3 Synthesis of Cholest-5-ene-3β,4β-diyl Diacetate (Steroid)

  • 4.4 Cycloetherization

  • 5 Reaction Mechanisms Using Deoxofluor and DAST

  • 5.1 Alcohols

  • 5.2 Aldehydes and Ketones

  • 5.3 Carboxylic Acids

  • 5.4 Sulfoxides

  • 5.5 Glyoxal Hydrates

  • 5.6 Ketoximes

  • 6 Conclusions

    References

  • 1 For the ability of fluorine to change the properties of organic molecules, see: Smart BE. Characteristics of C-F systems, In Organofluorine Chemistry: Principles and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum; New York: 1994.  p.57 
  • For the use of organofluorine compounds in medicinal and biomedical chemistry, see:
  • 2a Biomedical Frontiers of Fluorine Chemistry   Ojima I. McCarthy JR. Welch JT. American Chemical Society; Washington DC: 1996. ; ACS Symposium Series 639:
  • 2b Organic Chemistry in Medicinal Chemistry and Biomedical Applications   Filler R. Elsevier; Amsterdam: 1993. 
  • 2c Welch JT. Eswaraksrishnan S. Fluorine in Bioorganic Chemistry   Wiley; New York: 1991. 
  • 2d Filler R. Kirk K. Biological Properties of Fluorinated Compounds, In Chemistry of Organic Fluorine Compounds II: A Critical Review   Hudlicky M. Pavlath AE. American Chemical Society; Washington DC: 1995. ACS Monograph 187: 1011
  • 2e Elliot AJ. Fluorinated Pharmaceuticals, In Chemistry of Organic Fluorine Compounds II: A Critical Review   Hudlicky M. Pavlath AE. American Chemical Society; Washington DC: 1995. ACS Monograph 187: 1119-1125
  • 2f Enantiocontrolled Synthesis of Organofluorine Compounds, Stereochemical Challenge and Biomedical Targets   Sholoshonok VA. Wiley: New York, 1999. 
  • 3a For the use of organofluorine compounds in agrosciences, see: Cartwright D. Recent Developments in Fluorine-Containing Agrochemicals, In Organofluorine Chemistry: Principles and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum; New York: 1994.  p.237 
  • 3b Lang RW. Fluorinated Agrochemicals, In Chemistry of Organic Fluorine Compounds II   Hudlicky M. Pavlath AE. American Chemical Society; Washington DC: 1995. ; ACS Monograph 187: 1143
  • 4 Demitras GC. Kent RA. MacDiarmid AG. Chem. Ind. (London)  1964,  1712 
  • 5 Middleton WJ. J. Org. Chem.  1975,  40:  574 
  • 6a Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Chem. Commun.  1999,  215 
  • 6b Lal GS. Pez GP. Pesaresi RJ. Prozonic FM. Cheng H. J. Org. Chem.  1999,  64:  7048 
  • 7 Singh RP. Shreeve JM. J. Fluorine Chem.  2002,  116:  23 
  • 8 Hallett DJ. Gerhard U. Goodacre SC. Hitzel L. Sparey TJ. Rowley TSM. Ball RG. J. Org. Chem.  2000,  65:  4984 
  • 9 Sutherland A. Vederas JC. Chem. Commun.  1999,  1739 
  • 10 De Jonghe S. Overmeire IV. Calenbergh SV. Hendrix C. Busson R. De Keukeleire D. Herdewijn P. Eur. J. Org. Chem.  2000,  3177 
  • 11 Huang H. Han W. Noodleman L. Grynszpan F. Bioorg. Med. Chem.  2001,  9:  3185 
  • 12 Taing M. Keng Y. Shen K. Wu L. Lawrence DS. Zhang Z. Biochemistry  1999,  38:  3793 
  • 13 Inoue M. Hiratake J. Suzuki H. Kumagai H. Sakata K. Biochemistry  2000,  39:  7764 
  • 14 Shabat D. Itzhaky H. Reymond J.-L. Keinan E. Nature (London)  1995,  374:  143 
  • 15 Ryberg P. Matsson O. J. Org. Chem.  2002,  67:  811 
  • 16 Grunewald GL. Caldwell TM. Li Q. Criscione KR. J. Med. Chem.  2001,  44:  2849 
  • 17a Morton GO. Lancaster JE. Van Lear GE. Fulmer W. Meyer WE. J. Am. Chem. Soc.  1969,  91:  1535 
  • 17b Lamberth C. Recent Res. Dev. Synth. Org. Chem.  1998,  1 
  • 18 Vera-Ayoso Y. Borrachero P. Cabrera-Escribano F. Diánez MJ. Estrada MD. Gómez-Guillén M. López-Castro A. Pérez-Garrido S. Tetrahedron: Asymmetry  2001,  12:  2031 
  • 19 Takamatsu S. Maruyama T. Katayama S. Hirose N. Naito M. Izawa K. J. Org. Chem.  2001,  66:  7469 
  • 20 Maruyama T. Takamatsu S. Kozai S. Satoh Y. Izawa K. Chem. Pharm. Bull.  1999,  47:  966 
  • 21 Albert M. Repetschnigg W. Ortner J. Gomes J. Paul BJ. Illaszewicz C. Weber H. Steiner W. Dax K. Carbohydr. Res.  2000,  326:  395 
  • 22 Wachtmeister J. Muhlman A. Classon B. Samuelsson B. Tetrahedron  1999,  55:  10761 
  • 23a Mikhailopulo IA. Sivets GG. Helv. Chim. Acta  1999,  82:  2052 
  • 23b Shortnacy-Fowler AT. Tiwari KN. Montgomery JA. Buckheit RW. Secrist JA. Helv. Chim. Acta  1999,  82:  2240 
  • 24 Borrachero P. Cabrera-Escribano F. Carmona AT. Goómez-Guillén M. Tetrahedron: Asymmetry  2000,  11:  2927 
  • 25 Wong AW. He S. Withers SG. Can. J. Chem.  2001,  79:  510 
  • 26 Aghmiz ML. Diaz Y. Jana GH. Matheu MI. Echarri R. Castillon S. Jimeno ML. Tetrahedron  2001,  57:  6733 
  • 27 Card PJ. Reddy GS. J. Org. Chem.  1983,  48:  4734 
  • 28 Albert M. Repetschnigg W. Ortner J. Gomes J. Paul BJ. Illaszewicz C. Weber H. Steiner W. Dax K. Carbohydr. Res.  2000,  326:  395 
  • 29a Yoshimura Y. Kitano K. Endo M. Yamada K. Sakata S. Miura S. Machida H. Nucleosides Nucleotides  1999,  18:  815 
  • 29b Mikhailopulo IA. Sivets GG. Khripach NB. Nucleosides Nucleotides  1999,  18:  689 
  • 30 Singh RP. Chakraborty D. Shreeve JM. J. Fluorine Chem.  2002,  111:  153 
  • 31 Ichikawa M. Ichikawa Y. Bioorg. & Med. Chem. Lett.  2001,  11:  1769 
  • 32 Mase T. Houpis IN. Akao A. Dorziotis I. Emerson K. Hoang T. Iida T. Itoh T. Kamei K. Kato S. Kato Y. Kawasaki M. Lang F. Lee J. Lynch J. Maligres P. Molina A. Nemoto T. Okada S. Reamer R. Song JZ. Tschaen D. Wada T. Zewge D. Volante RP. Reider PJ. Tomimoto K. J. Org. Chem.  2001,  66:  6775 
  • 33 Guirgis GA. Bell S. Durig JR. J. Raman Spectroscopy  2000,  31:  987 
  • 34 Chen G. Qi Y. Huaxue Shiji  2001,  23:  296 ; Chem. Abstr. 136: 183600g
  • 35 Singh RP. Majumder U. Shreeve JM. J. Org. Chem.  2001,  66:  6263 
  • 36 Asato AE. Liu RSH. Tetrahedron Lett.  1986,  27:  3337 
  • 37a Sammes PG. Chem. Rev.  1976,  76:  113 
  • 37b Hermann P. In Organosulfur Chemistry   Friedlima R. Skorova AE. Pergaman; Oxford: 1981.  p.51 
  • 37c Jarvi ET. McCarthy JR. Mehdi JR. Matthews DP. Edwards MC. Prakash NJ. Bowlin TL. Sunkara PS. Bey PJ. J. Med. Chem.  1991,  34:  647 
  • 38 Ringom R. Benneche T. Acta Chim. Scand.  1999,  53:  41 
  • 39 Laali KK. Borodkin GI. J. Fluorine Chem.  2002,  115:  169 
  • 40 Lal GS. Lobach E. Evans A. J. Org. Chem.  2000,  65:  4830 
  • 41 Suresh Babu VV. Gopi HN. Ananda K. Indian J. Chem.  2000,  39B:  384 
  • 42a Singh RP. Twamley B. Shreeve JM. J. Org. Chem.  2002,  67:  1918 
  • 42b Singh RP. Shreeve JM. Org. Lett.  2001,  3:  2713 
  • 43 Lakshmipathi P. Gree D. Gree R. Org. Lett.  2002,  4:  451 
  • 44 Filmon J. Gree D. Gree R. J. Fluorine Chem.  2001,  107:  271 
  • 45 Agbaria K. Wohnert J. Biali SE. J. Org. Chem.  2001,  66:  7059 
  • 46 Zhou H. Van der Donk WA. Org. Lett.  2001,  3:  593 
  • 47 Kirihara M. Niimi K. Okumura M. Momose T. Chem. Pharm. Bull.  2000,  48:  220 
  • 48 Phillips AJ. Uto Y. Wipf P. Reno MJ. Williams DR. Org. Lett.  2000,  2:  1165 
  • 49 Jones G. Butler DCD. Richards CJ. Tetrahedron Lett.  2000,  41:  9351 
  • 50 Tunoori AR. White JM. Georg GI. Org. Lett.  2000,  2:  4091 
  • 51 Kennedy AR. Pitt AR. Suckling CJ. Thomas M. Acta Crystallogr.  1999,  55C:  1570 
  • 52 Chung S. Kwon Y. Ahn Y. Jeong T. Chang Y. Bull. Korean Chem. Soc.  2000,  21:  274 ; Chem. Abstr.132: 332690g
  • 53 Tewson TJ. Welch MJ. J. Org. Chem.  1978,  43:  1090 
  • 54 McCarthy JR. Peet NP. Le Tourneau EM. Inbasekaran M. J. Am. Chem. Soc.  1985,  107:  735