Semin Neurol 2002; 22(3): 279-288
DOI: 10.1055/s-2002-36647
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Neuroimaging of Epilepsy

Ruben I. Kuzniecky, Robert C. Knowlton
  • UAB Epilepsy Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
Further Information

Publication History

Publication Date:
15 January 2003 (online)

ABSTRACT

Neuroimaging has an important role in the investigation and treatment of patients with epilepsy. Diagnosis of the underlying substrate in a given patient with epilepsy determines prognosis with higher accuracy than electroencephalography. Neuroimaging techniques include computed tomography (CT) and magnetic resonance imaging (MRI), although CT has a diminished role for diagnosis. MRI is the most appropriate imaging technique in the initial investigation of patients with epilepsy. MRI is the most sensitive technique for the diagnosis of hippocampal sclerosis, tumors, and malformations of cortical development. MRI is also critical for neurosurgical planning. Other imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography are reserved for patients with intractable epilepsy when surgery is contemplated. New developments such as MR spectroscopy, receptor PET, and magnetic source imaging are becoming clinical tools and have the promise of improving diagnosis.

REFERENCES

  • 1 Kuzniecky R, Jackson G. Neuroimaging in epilepsy. In: Magnetic Resonance in Epilepsy New York: Raven Press 1995: 27-48
  • 2 Kuzniecky R. Structural imaging. In: Engel JJ, ed. Surgical Treatment of the Epilepsies 2nd ed. New York: Raven Press 1993: 197-200
  • 3 Kuzniecky R, de la Sayette V, Ethier R, Melanson D, Andermann F. Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations.  Ann Neurol . 1987;  22 341-347
  • 4 Jackson G D, Berkovic S F, Duncan J S, Connelly A. Optimizing the diagnosis of hippocampal sclerosis using magnetic resonance imaging.  AJNR . 1993;  14 753-762
  • 5 Kuzniecky R, Bilir E, Gilliam F, Faught E, Palmer C, Morawetz R. Multimodality MRI in mesial temporal sclerosis: relative sensitivity and specificity.  Neurology . 1997;  49 774-778
  • 6 Lee Y Y, Van Tassel P, Bruner J M, Moser R P, Share J C. Juvenile pilocytic astrocytomas: CT and MR characteristics.  AJR . 1989;  152 1263-1270
  • 7 Ulivelli M, Rocchi R, Vatti G. [CAT and MRI in the study of partial epilepsy: comparison of the 2 methods and correlations with EEG].  Riv Neurol . 1991;  61(5) 161-165
  • 8 Bauer J, Stefan H, Huk W J. CT, MRI and SPECT neuroimaging in status epilepticus with simple partial and complex partial seizures: case report.  J Neurol . 1989;  236 296-299
  • 9 Duncan R, Patterson J, Hadley D M. CT, MR and SPECT imaging in temporal lobe epilepsy.  J Neurol Neurosurg Psychiatry . 1990;  53 11-15
  • 10 Zimmerman R D, Leeds N E, Danziger A. Subdural empyema: CT findings.  Radiology . 1984;  150 417-422
  • 11 Hankey G L, Davies L, Gubbay S S. Long term survival with early childhood intracerebral tumours.  J Neurol Neurosurg Psychiatry . 1989;  52 778-781
  • 12 Wyllie E, Rothner A D, Luders H. Partial seizures in children: clinical features, medical treatment, and surgical considerations.  Pediatr Clin North Am . 1989;  36 343-364
  • 13 Fortuna A, Ferrante L, Mastronardi L, Acqui M, d'Addetta R. Cerebral cavernous angioma in children.  Childs Nerv Syst . 1989;  5 201-207
  • 14 Lechevalier B, Houtteville J P. [Intracranial cavernous angioma].  Rev Neurol (Paris) . 1992;  148(3) 173-179
  • 15 Kishikawa H, Ohmoto T, Nishimoto A. Brain tumor with seizures in children.  Brain Dev Tokyo . 1980;  12 19-26
  • 16 Altman N R. MR and CT characteristics of gangliocytoma: a rare cause of epilepsy in children.  AJNR . 1988;  9 917-921
  • 17 Gastaut H, Gastaut J J. Computerized transverse axial tomography in epilepsy.  Epilepsia . 1976;  17 325-336
  • 18 Wyler A R, Bolender N F. Preoperative CT diagnosis of mesial temporal sclerosis for surgical treatment of epilepsy.  Ann Neurol . 1983;  13 59-64
  • 19 Jack Jr R C, Rydberg C H, Krecke K N. Mesial temporal sclerosis: diagnosis with FLAIR versus spin-echo MR imaging.  Radiology . 1996;  199 367-373
  • 20 Mathieson G. Pathology of temporal lobe foci. In: Penry JK, Daly DD, eds. Complex Partial Seizures and Their Treatment New York: Raven Press 1975: 163-185
  • 21 Falconer M A. Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy: aetiology, treatment and prevention.  Lancet . 1974;  2 767-770
  • 22 Babb T L, Pretorius J K. Pathological substrates of epilepsy. In: Wylie E, ed. The Treatment of Epilepsy: Principles and Practice Philadelphia: Lea & Febiger 1993: 55-70
  • 23 Kuzniecky R, Murro A, King D. Magnetic resonance imaging in childhood intractable partial epilepsies: pathologic correlations.  Neurology . 1993;  43 681-687
  • 24 Kuzniecky R I. Magnetic resonance imaging in developmental disorders of the cerebral cortex.  Epilepsia . 1994;  35 S44-S56
  • 25 Kuzniecky R, Garcia J H, Faught E, Morawetz R B. Cortical dysplasia in TLE: MRI correlations.  Ann Neurol . 1991;  29 293-298
  • 26 Cascino G D, Jack Jr R C, Parisi J E. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations.  Ann Neurol . 1991;  30 31-36
  • 27 Cendes F, Andermann F, Glorr P. MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy.  Neurology . 1993;  43 719-725
  • 28 Jack Jr R C. MRI-based hippocampal volume measurements in epilepsy.  Epilepsia . 1994;  35 S21-S29
  • 29 Kuzniecky R. MRI volumetric analysis of fornix and mammillary bodies in partial epilepsy.  Neurology . 1996;  46 334-338
  • 30 Ho S, Kuzniecky R I, Gilliam F, Faught E, Bebin M, Morawetz R. Congenital porencephaly: MR features and relationship to hippocampal sclerosis.  AJNR . 1998;  19 135-141
  • 31 Ho S, Kuzniecky R I, Gilliam F, Faught E, Bebin M, Morawetz R. Congenital porencephaly and hippocampal sclerosis. Clinical features and epileptic spectrum.  Neurology . 1997;  49 1382-1388
  • 32 Cendes F, Cook M J, Watson C. Frequency and characteristics of dual pathology in patients with lesional epilepsy.  Neurology . 1995;  45 2058-2064
  • 33 Guerrini R. Focal anomalies of the cortical development and epilepsy: electroclinical features in the bilateral opercular malformations.  Boll Lega Ital Epilessia . 1990;  71 109-111
  • 34 Norman M. Congenital Malformations of the Brain.  New York: Oxford University Press 1995
  • 35 Kuzniecky R, Gilliam F, Morawetz R, Faught E, Palmer C, Black L. Occipital lobe developmental malformations and epilepsy: clinical spectrum, treatment and outcome.  Epilepsia . 1997;  38 175-181
  • 36 Barkovich A J, Kuzniecky R I. Neuroimaging of focal malformations of cortical development.  J Clin Neurophysiol . 1996;  13 481-494
  • 37 Fernandez G, Effenberger O, Vinz B. Hippocampal malformations as a cause of familial febrile convulsions and subsequent hippocampal sclerosis.  Neurology . 1998;  50 909-917
  • 38 Barkovich A J. Pediatric Neuroimaging.  2nd ed. New York: Raven Press 1995: 668
  • 39 Barkovich A J, Guerrini R, Battaglia G. Band heterotopia: correlation of outcome with MRI parameters.  Ann Neurol . 1994;  36 609-617
  • 40 Kuzniecky R, Andermann F, Guerrini R. Congenital bilateral perisylvian syndrome: study of 31 patients.  Lancet . 1993;  341 608-612
  • 41 Barkovich A J, Kjos B O, Jackson Jr E D, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.  Radiology . 1988;  166 173-180
  • 42 Andersen A R, Waldemar G, Dam M, Fuglsang-Frederiksen A, Herning M, Kruse-Larsen C. SPECT in the presurgical evaluation of patients with temporal lobe epilepsy-a preliminary report.  Acta Neurochir Suppl (Wien) . 1990;  50 80-83
  • 43 Grunwald F. Technetium-99m-HMPAO brain SPECT in medically intractable temporal lobe epilepsy: a postoperative evaluation.  J Nucl Med . 1991;  32 388-394
  • 44 Bauer J, Stefan H, Feistel H. Ictal and interictal SPECT measurements using (99m)Tc-HMPAO in patients suffering from temporal lobe epilepsies.  Nervenarzt . 1991;  62 745-749
  • 45 Editorial. PET and SPECT in epilepsy.  Lancet . 1989;  1 135-137
  • 46 Spencer S S. The relative contributions of MRI, SPECT, and PET imaging in epilepsy.  Epilepsia . 1994;  35 S72-S89
  • 47 Mountz J. Quantification of the SPECT brain scan. In: Lawrence M, ed. Nuclear Medicine Annual New York: Raven Press 1991: 67-98
  • 48 Krausz Y, Cohen D, Konstantini S, Meiner Z, Yaffe S, Atlan H. Brain SPECT imaging in temporal lobe epilepsy.  Neuroradiology . 1991;  33 274-276
  • 49 Marks D A, Katz A, Hoffer P, Spencer S S. Localization of extra temporal epileptic foci during ictal SPECT.  Ann Neurol . 1992;  31 250-255
  • 50 Ho S S, Berkovic S F, Newton M R, Austin M C, McKay W J, Bladin P F. Parietal lobe epilepsy: clinical features and seizure localization by ictal SPECT.  Neurology . 1994;  44 2277-2284
  • 51 Laich E, Kuzniecky R, Mountz J. Supplementary sensorimotor area epilepsy: seizure localization, cortical propagation and subcortical activation pathways using ictal SPECT.  Brain . 1997;  120 855-864
  • 52 Harvey A S, Hopkins I J, Bowe J M, Cook D J, Shield L K, Berkovic S F. Frontal lobe epilepsy: clinical seizure characteristics and localization with ictal 99mTc-HMPAO SPECT.  Neurology . 1993;  43 1966-1980
  • 53 Mauguiere F, Ryvlin P. Interictical hypometabolism assessed by positron emission tomography (PET) in adult patients with temporal lobe epilepsy.  Epilepsies . 1991;  3(2) 2-3
  • 54 Ryvlin P, Philippon B, Cinotti L. Functional neuro-imaging strategy in temporal lobe epilepsy: a comparative study of 18FDG-PET and 99mTc-HMPAO-SPECT.  Ann Neurol . 1992;  31 650-656
  • 55 Radtke R A. Temporal PET hypometabolism: predictor of positive outcome after temporal lobectomy.  Epilepsia . 1990;  31 626-629
  • 56 Theodore W H. Pathology of temporal lobe foci: correlation with CT, MRI, and PET.  Neurology . 1990;  40 797-803
  • 57 Chugani H. The role of PET in childhood epilepsy.  J Child Neurol . 1994;  9 S82-S88
  • 58 Engel Jr J J, Brown W J, Kuhj D E, Phelps M E, Mazziotta J C, Crandall P H. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy.  Ann Neurol . 1982;  12 518-528
  • 59 Chugani H T, Shields W D, Shewmon D A, Olson D M, Phelps M E, Peacock W J. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment.  Ann Neurol . 1990;  24 406-413
  • 60 Chugani H T, Phelps M E, Mazziotta J C. PET study of human brain functional development.  Ann Neurol . 1987;  22 487-497
  • 61 Kuzniecky R, Elgavish G A, Hetherington H P, Evanochko W T, Pohost G M. In vivo 31P nuclear magnetic resonance spectroscopy of human temporal lobe epilepsy.  Neurology . 1992;  42 1586-1590
  • 62 Gadian D G, Connelly A, Duncan J S. 1H magnetic resonance spectroscopy in the investigation of intractable epilepsy.  Acta Neurol Scand . 1993;  152 116-122
  • 63 Connelly A, Jackson G D, Duncan J S, King M D, Gadian D G. Proton MRS in temporal lobe epilepsy.  Neurology . 1994;  44 1411-1417
  • 64 Cendes F. MR Spectroscopy differentiates lactate in complex partial versus absence seizures.  Ann Neurol . 1997;  41 74-81
  • 65 Hetherington H, Kuzniecky R, Pan J. Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T.  Ann Neurol . 1995;  38 396-404
  • 66 Kuzniecky R, Hugg J W, Hetherington H. Relative utility of proton MRS and volumetry in the lateralization of mesial temporal sclerosis.  Neurology . 1998;  51 66-71
  • 67 Ng T C, Comair Y G, Xue M. Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging.  Radiology . 1994;  193 465-171
  • 68 Jackson G D. 1H MRS and T2 relaxometry of the contralateral temporal lobe after epilepsy surgery.  Epilepsia . 1993;  34 144-149
  • 69 Detre J A, Sirven J I, Alsop D C, O'Connor M J, French J A. Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring.  Ann Neurol . 1995;  38 618-624
  • 70 Jackson G D, Connelly A, Cross J H, Gordon I, Gadian D G. Functional magnetic resonance imaging of focal seizures.  Neurology . 1994;  44 850-856
  • 71 Stefan H, Schneider S, Feistel H. Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings.  Epilepsia . 1992;  33 874-887
  • 72 Crisp D, Weinberg H, Podrouzek K W. Imaging techniques in the localization of epileptiform abnormalities.  Int J Neurosci . 1991;  60 33-57
    >