Horm Metab Res 2002; 34(11/12): 635-639
DOI: 10.1055/s-2002-38254
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Effects of Soy Protein Diet on the Expression of Adipose Genes and Plasma Adiponectin

A.  Nagasawa 1 , K.  Fukui 2 , T.  Funahashi 1 , N.  Maeda 1 , I.  Shimomura 1 , S.  Kihara 1 , M.  Waki 3 , K.  Takamatsu 2 , Y.  Matsuzawa 1
  • 1 Department of Molecular Science and Internal Medicine, Osaka University, Graduate School of Medicine, Osaka, Japan
  • 2 Department of Novelty Materials, Research Institute, Fuji Oil Co., Ltd., Osaka, Japan
  • 3 Department of Endocrinology and Metabolism, Shizuoka Municipal Hospital, Shizuoka, Japan
Further Information

Publication History

Received 4 November 2002

Accepted after revision 3 December 2002

Publication Date:
27 March 2003 (online)

Abstract

Many studies have reported the cholesterol-lowering, anti-lipogenic, anti-obesity and anti-hypertensive effects of soy protein. Adipose tissue-specific plasma protein, adiponectin, has anti-atherogenic and anti-insulin-resistance properties. Here, we investigated the effects of soy protein diet on body fat composition, plasma glucose, lipid and adiponectin levels and expression of genes involved in glucose and fatty acid metabolism in obese KK-Ay mice. Body weights and adipose tissue weights of mesenteric, epididymal, and brown fat were lower in mice on calorie-restricted diet containing soy protein isolate. Plasma cholesterol, triglyceride, free fatty acid, and glucose levels were also decreased by this diet. Body fat content and plasma glucose levels in mice on a soy protein isolate diet were still lower than those treated with an isocaloric casein-protein-diet. Among the genes related to glucose and fatty acid metabolism, adiponectin mRNA levels in adipose tissue and adiponectin plasma concentrations were elevated in mice on a calorie-restricted diet, although there were no significant differences between soy protein and casein protein groups. Our results indicate that that soy protein diet decreased body fat content and plasma glucose levels more effectively than isocaloric casein-protein diet in obese mice.

References

  • 1 Funahashi T, Nakamura T, Shimomura I, Maeda K, Kuriyama H, Takahashi M, Arita Y, Kihara S, Matsuzawa Y. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity.  Intern Med. 1999;  38 202-206
  • 2 Takahashi M, Funahashi T, Shimomura I, Miyaoka K, Matsuzawa Y. Plasma leptin levels and body fat distribution.  Horm Metab Res. 1996;  28 751-752
  • 3 Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity.  Nat Med. 1996;  2 800-803
  • 4 Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein, adiponectin.  Circulation. 1999;  100 2473-2476
  • 5 Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M, Igura T, Inui Y, Kihara S, Nakamura T, Yamashita S, Miyagawa J, Funahashi T, Matsuzawa Y. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls.  Horm Metab Res. 2000;  32 47-50
  • 6 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through cAMP-dependent pathway.  Circulation. 2000;  102 1296-1301
  • 7 Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.  Circulation. 2001;  103 1057-1063
  • 8 Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, acts as a platelets growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell.  Circulation. 2002;  105 2893-2898
  • 9 Zoccali C, Mallamaci F, Tripepi G, Cutrupi S, Parlongo S, Malatino L, Bonanno G, Rapisarda F, Fatuzzo P, Tanaka S, Funahashi T, Ouchi N, Kihara S, Matsuzawa Y. Adiponectin, the most abundant adipocyte-derived protein, is functionally related to metabolic risk factors and predicts cardiovascular outcomes in end stage renal disease.  J Am Soc Nephrol. 2002;  13 134-141
  • 10 Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y. Role of adiponectin in preventing vascular stenosis- the missing link of adipo-vascular axis.  J Biol Chem. 2002;  277 37 487-37 491
  • 11 Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi1 K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. Adiponectin prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation (in press). 
  • 12 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 13 Hotta K, Funahashi T, Bodkin N L, Ortmeyer H K, Arita Y, Hansen B C, Matsuzawa Y. Circulating concentrations of the adipocyte protein, adiponectin, are decreased in parallel with reduced insulin sensitivity during the progression to type-2 diabetes in rhesus monkeys.  Diabetes. 2001;  50 1126-1133
  • 14 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R E, Tataranni P A. Hypoadiponectinemia in obesity and type 2 diabetes: Evidence for a role of insulin resistance and/or hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 15 Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M, Kondo H, Furuyama N, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.  Diabetes. 2002;  51 2734-2741
  • 16 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8 731-737
  • 17 Lindsay R S, Funahashi T, Hanson R L, Matsuzawa Y, Tanaka S, Tataranni P A, Knowler W C, Krakoff J. Adiponectin protects against development of type 2 diabetes in the Pima Indian population.  Lancet. 2002;  360 57-58
  • 18 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, and M atsuzawa. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 19 Yang W S, Lee W J, Funahashi T, Tanaka S, Matsuzawa Y, Chao C L, Chen C L, Tai T Y, Chuang L M. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin.  J Clin Endocrinol Metab. 2001;  86 3815-3819
  • 20 Hermansen K, Sondergaard M, Hoie L, Carstensen M, Brock B. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects.  Diabetes Care. 2001;  24 228-233
  • 21 Anderson J W, Johnstone B M, Cook-Newell M E. Meta-analysis of the effects of soy protein intake on serum lipids.  N Engl J Med. 1995;  333 276-282
  • 22 Jenkins D J, Wolever T M, Spiller G. et al . Hypocholesterolemic effect of vegetable protein in a hypocaloric diet.  Atherosclerosis. 1989;  78 99-107
  • 23 Iritani N, Hosomi H, Fukuda H, Tada K, Ikeda H. Soybean protein suppresses hepatic lipogenic enzyme gene expression in Wistar fatty rats.  J Nutr. 1996;  126 380-388
  • 24 Aoyama T, Fukui K, Takamatsu K, Hashimoto Y, Yamamoto T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK).  Nutrition. 2000;  16 349-354
  • 25 Burke V, Hodgson J M, Beilin L J, Giangiulioi N, Rogers P, Puddey I B. Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives.  Hypertension. 2001;  38 821-826
  • 26 Nevala R, Vaskonen T, Vehniainen J, Korpela R, Vapaatalo H. Soy based diet attenuates the development of hypertension when compared to casein based diet in spontaneously hypertensive rat.  Life Sci. 2000;  66 115-124
  • 27 He G, Pedersen S B, Bruun J M, Richelsen B. Regulation of plasminogen activitor inhibitor-1 in human adipose tissue: interaction between cytokines, cortisol and estrogen.  Horm Metab Res. 2000;  32 515-520
  • 28 Walker C G, Bryson J M, Phuyal J L, Caterson I D. Dietary modulation of circulating leptin levels: site-specific changes in fat deposition and ob mRNA expression.  Horm Metab Res. 2002;  34 176-181
  • 29 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARγ ligands increase expression and plasma concentrations of adiponectin, adipose-derived protein.  Diabetes. 2001;  50 2094-2099
  • 30 Kissebah A H, Sonnenberg G E, Myklebust J, Goldstein M, Broman K, James R G, Marks J A, Krakower G R, Jacob H J, Weber J, Martin L, Blangero J, Comuzzie A G. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome.  Proc Natl Acad Sci USA. 2000;  97 14 478-14 483
  • 31 Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M, Ouchi N, Kihara S, Kawamoto T, Sumitsuji S, Funahashi T, Matsuzawa Y. Association of adiponectin/ACRP30/AdipoQ mutation with type 2 diabetes mellitus: A candidate gene for the insulin resistance syndrome.  Diabetes. 2002;  51 2325-2358
  • 32 Fruebis J, Tsao T S, Javorschi S, Ebbets-Reed D, Erickson M R, Yen F T, Bihain B E, Lodish H F. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.  Proc Natl Acad Sci USA. 2001;  98 2005-2010
  • 33 Ma K, Cabrero A, Saha P K, Kojima H, Li L, Chan B H, Paul A, Chan L. Increased β-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin.  J Biol Chem. 2002;  277 34 658-34 661

T. Funahashi

Department of Molecular Science and Internal Medicine

Osaka University, Graduate School of Medicine · 2-2 Yamada-oka B5, Suita · Osaka, 565-0871 · Japan ·

Phone: + 81 (6) 68 79-37 32

Fax: + 81 (6) 68 79-37 39

Email: tohru@imed2.med.osaka-u.ac.jp

    >