A New Diepoxo-ent-kauranoid, Rugosin, from *Isodon rugosus*

Ahmed Abbaskhan¹, M. Iqbal Choudhary¹, Yoshisuke Tsuda¹, Masood Parvez², Atta-ur-Rahman¹, Farzana Shaheen¹, Zeba Parween¹, Rasool Baksh Tareen², Mudassir Asrar Zaidi³

Abstract

A new diterpenoid, rugosin (1), isolated from *Isodon rugosus*, with absolute configuration was proved by single-crystal X-ray diffraction analysis, to be the member of a rare class of C-20/C-7 and C-20/C-14 diepoxo-ent-kauranoids. Effusalin A (2), effusalin B (3), effusalin E (4), lasiokaurin (5) and oridonin (6) were found as known constituents of the genus *Isodon* with C-20/C-7 epoxy function. These compounds have exhibited DNA-damaging activity in assay which employed DNA-repair deficient (RAD 52Y) and repair proficient (RAD4) yeast strains.

Many ent-kaurane diterpenoids have been isolated from plants belonging to the genus *Isodon* (syn. *Rabdosia*), most of which have significant biological activities [1], [2], [3], [4]. The present phytochemical investigation on the methanolic extracts of *Isodon rugosus* of Pakistani origin has led to isolation of six ent-kauranoids (1 – 6). Compound 1 was obtained from the aerial part of the plant along with known epoxy-ent-kauranoids, effusalin A (2) [5], effusalin B (3) [5], effusalin E (4) [5], lasiokaurin (5) [6] and oridonin (6) [7]. The new compound, rugosin (1) had a unique structure in which two epoxy units are present as ether bridges between C-20/C-7 and C-20/C-14. The structure was confirmed by X-ray crystallographic analysis.

Rugosin (1) is a sixth example of diepoxo containing ent-kauranoid. Among five of known congeners of this rare class [8], [9], [10], only the structure of xerophilusin C, has been determined by the X-ray diffraction analysis [10]. The new compound, rugosin (Fig.1) was found to be a 6-O-acetyl derivative of xerophilusin A [10]. The present work, therefore, provides further confirmation of the diepoxo-containing structures in this class of compounds.

The structure 1 established by X-ray diffraction analysis clearly explains the NMR spectral pattern. The diepoxyl linkages present between C-7/C-20 and C-14/C-20 forces the molecule to acquire

Affiliation: ¹ H. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi, Pakistan - ² Department of Chemistry, Faculty of Science, University of Calgary, Calgary, Alberta, Canada - ³ Department of Botany, University of Balochistan, Quetta, Pakistan

Correspondence: Prof. Dr. M. Iqbal Choudhary · H.E.J. Research Institute of Chemistry · International Center for Chemical Sciences · University of Karachi · Karachi-75270, Pakistan · Fax: (+92)-21-924-3190 · Phone: (+92)-21-924-3224 · E-mail: zainraa@digicom.net.pk

Received: May 3, 2002 - **Accepted:** August 13, 2002

Bibliography: Planta Med 2003; 69: 94–96 · © Georg Thieme Verlag Stuttgart · New York · ISSN 0032-0943
Compounds 1–5 exhibited significant cytotoxic activity in the bioassay employing DNA repair-deficient (RAD 52Y, mutant) yeast strains [11]. This may be due to the presence of conjugated exomethylene system in an ent-kaurane skeleton [11]. Interestingly, these compounds were invariably less toxic to the repair-proficient (RAD+, wild type) yeast strains. Compound 6 was not tested due to insufficient quantity.

Material and Methods

Melting points were determined on a Yanaco apparatus. UV spectra were measured on a Shimadzu UV 240 spectrophotometer. IR spectra were recorded on a Jasco A-302 spectrophotometer. 1H- and 13C-NMR spectra were recorded on a Bruker AM-400 spectrometer with tetramethylsilane (TMS) as an external standard. 2D NMR spectra were recorded on a Bruker AMX 500 NMR spectrometer. Optical rotations were measured on Jasco DIP-360 digital polarimeter using 10 cm cell tube. Mass spectra (EI and HREIMS) were measured in an electron impact mode on Finnigan MAT 311 or MAT 312 spectrometers and ions are given in m/z (%). Fast atom bombardments (FAB) MS were measured on Jeol HX110 mass spectrometer. TLC was performed on a precoated silica gel card (E. Merck). For column chromatography, silica gel (E. Merck, 230 – 400 mesh) was used.

The aerial parts of L. rugosus Wall. were collected from Shahrig, Balochistan, Pakistan, in December 1998 by two of us (R. B. T. and M. A. Z.). A voucher specimen (No. 1422) was deposited in the Herbarium of the University of Balochistan.

Air-dried and ground aerial parts of L. rugosus (7.5 kg) were extracted three times (each one week) with MeOH (20 L) at room temperature. The resulting MeOH extract was concentrated under vacuum. The dried extract (ca. 500 g) was adsorbed on silica gel (ca. 1.5 kg) and eluted with hexane, hexane-CHCl3 (1:1, 2 × 500 mL), CHCl3 (100 %, 2 × 750 mL), CHCl3-MeOH (1:1, 1 × 750 mL) and MeOH (100 %, 2 × 500 mL). The CHCl3 (300 g) fraction was chromatographed over 900 g of silica gel and eluted with mixtures of CHCl3 in hexane (50 % to 100 %, ca. 2.5 × 750 mL each of the five fractions) and then with acetone (2 × 1 L). The CHCl3 (100 %) eluant (1.5 g) afforded compounds 1 (ca. 50 mg, 7.1 × 10-4 % yield) and 3 (ca. 40 mg, 5.7 × 10-5 %). The acetone eluant was concentrated and the residue (163 g) was extracted successively with hexane, ether, benzene, EtOAc, and CHCl3-MeOH (ca. 2 × 500 mL each eluant). The ether extract (39 g) was chromatographed on silica gel (90 g) with CHCl3-MeOH (5 % to 10 %, 2 × 250 mL) to obtain nine fractions. The fractions 6–8 (750 mg) were combined and chromatographed over 2.5 g silica gel using EtOAc-hexane-MeOH (30:65:5), stepwise elutions (12 × 50 ml) with increasing only EtOAc from 30–50 % to obtain compounds 2, 4, 5, and 6 in ca. 20 mg (2.8 × 10-5 % yield), 45 mg (6.4 × 10-4 % yield), 35 mg (5 × 10-4 % yield) and 15 mg (2.1 × 10-4 % yield), respectively. Compounds 2–6 were identified by comparison of their physical and spectral data with that reported in the literature.

Rugosinin (1): Colorless prisms (EtOAc-hexane); m.p. 156–158°C; [α]D 132 = -127° (MeOH, c 0.4); UV (MeOH): λmax (ε) = 232 nm (4.10); IR (CHCl3): νmax = 3350, 1722, 1640 cm⁻1; EIMS: m/z = 386 [(M - AcOH)+, 23], 326 [(M-2×AcOH)+, 16], 298 (53), 280 (100); FABMS (ve): m/z = 537 [M+glycerol-1]+; HREIMS m/z = 386.1752, calcd: for (C32H52O8 - AcOH) 386.1729. 1H-NMR (400 MHz, CDCl3): δ = 6.04, 5.39 (each 1H, s, CH2 = C ≡), 5.12 (1H, d, J12a,12β = 5.6 Hz, H-11α), 5.11 (1H, s, H-20), 4.86 (1H, d, J10a,5p = 1.5 Hz, H-6α), 4.59 (1H, br d, J10b,5p = 6.1 Hz, H-14β), 3.19 (1H, br, H-12α,12β = 6.1 Hz, J12a,12β = 3.1 Hz, J13a,13b = 3.1, H-13α), 2.48 (1H, ddd, J12a,12b = 14.6 Hz, J5a,5b = 6.6 Hz, J12a,12b = 3.1 Hz, H-12α), 2.17 (1H, br, s, H-9β), 2.23, 1.90 (each 3H, s, OAc), 0.89 (6H, s, 2 × Me). 13C-NMR (100 MHz, CDCl3): δ = 27.1 (C-1), 18.4 (C-2), 40.0 (C-3), 34.5 (C-4), 60.0 (C-5), 74.0 (C-6), 101.0 (C-7), 55.0 (C-8), 53.0 (C-9), 44.0 (C-10), 67.0 (C-11), 31.7 (C-12), 38.5 (C-13), 68.5 (C-14), 199.0 (C-15), 150.0 (C-16), 117.5 (C-17), 30.9 (C-18), 23.1 (C-19), 97.1 (C-20), 171.6, 171.9 (2 × OC(O)H2), 21.4, 21.2 (2 × OC(O)H3).

Effusin A (2): Colorless needles (EtOH); m.p. 252–256°C; [α]D 132 = -53.8° (EtOH, c 0.4) [lit. 6] 262–265°C; [α]D 132 = -76.0° (EtOH, c 0.05)).
Eflusin B (3): Colorless prisms (acetone-hexane); m.p. 254 – 256 °C; [α]D25: –60° (MeOH, c 0.1) [lit. (6)] 258 – 260 °C; [α]D25: –66.7° (EtOH, c 0.027).

Eflusin E (4): Colorless prisms (EtOH); m.p. 231 – 235 °C [lit. (5)] 240 – 242 °C; [α]D25: –28.2° (EtOH, c 0.06) [lit.(5)] [α]D25: –81.3° (C7H8N, c 0.28).

Lasikaurin (5): Colorless needles (MeOH); m.p. 237 – 241 °C; [α]D25: –57° (EtOH, c 0.2) [lit. (6)] 223 – 226 °C; [α]D25: –68° (EtOH, c 0.05).

Oridin (6): Colorless prisms (EtOH); m.p. 254 – 260 °C; [α]D25: –51° (EtOH, c 0.1) [lit.(6)] 250 – 252 °C; [α]D25: –54.6° (EtOH, c 0.097).

X-Ray crystallography of rugosin (1)

X-Ray diffraction data of compound 1 was collected on a Enraf-Nonius CAD-4 diffractometer with graphite monochromated Cu-Kα radiations at a temperature of 20 ± 1 °C using the o-2θ scan at variable speeds 5° – 2θ < 136°. A total of 4338 reflections were collected, 4011 were found unique (Rint = 0.33). Freidal pairs of reflections were also measured and were enantiomers were identified by statistical methods. The structure 1 was solved by direct methods (SIR92) [13] and expanded using the Fourier technique. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement using F2 with the aid of SHELXL97 [14] was based on 3614 observed reflections above I > 2σ(I) level and 295 variable parameters. The final unweighted and weighted agreement factors (largest parameter shifts was 0.001 times its ESD) were R = 0.059 and wR = 0.169. All calculations for data reduction were performed by using teXsan [15] crystallographic software package. The ORTEP drawing of the molecule with absolute configuration is given in Fig. 1. Crystal Data: Approximate crystal size, 0.42 x 0.37 x 0.18 mm3, C24H24O8, Mw = 446.48, orthorhombic, a = 10.7404(16), b = 19.191(3), c = 10.7464(10) Å, V = 2215.0(5) Å3, D = 1.339 g/cm3, Z = 4. Space group, P2₁2₁2₁ (No. 19). R = 0.059, wR = 0.169. The X-ray data are deposited in Cambridge Crystallographic Data Center (12 Union Road, Cambridge, CB2 1EZ, UK).

Assay for growth inhibition of Saccharomyces cerevisiae

Assay was performed according to the method reported by Gunatilaka et al. [12]. Strains of genetically engineered yeast (Saccharomyces cerevisiae) were provided by Mr. Leo Faucette of SmithKline Beecham Pharmaceuticals. The strains RS322YK (RAD 52) were plated on YPD agar (7 mm layer) in 170 x 170 mm plate. Wells (6 mm diameter) were dug in the plates (9 wells in 170 x 170 mm plate) with a sterile cork bore. Test compounds were dissolved in DMSO-MeOH (1:1) and 100 µl samples were placed in each well. Streptorinigin was used as a positive control for RS322YK yeast strain. Plates were read after incubation for 48 h at 30 °C. IC12 value was determined as the dose that gives an inhibition zone of 12 mm using a 6 mm diameter. The data on RAD 52Y (mutant strain) and RAD+ (wild type) are given in Table 1.

Copies of the original spectra of all the compounds and positional parameters (X-ray diffraction data) for 1 can be obtained from the corresponding author on request.

Table 1: Bioactivity of compounds 1–5

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yeast Strain</th>
<th>RAD 52</th>
<th>RAD+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rugosin (1)</td>
<td>25</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Eflusin A (2)</td>
<td>20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Eflusin B (3)</td>
<td>12</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Eflusin E (4)</td>
<td>95</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>Lasikaurin (5)</td>
<td>90</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>Streptorinig</td>
<td>0.4</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

*Results are expressed as IC12 values in µg/ml.
Standard reference compound.*

Acknowledgements

One of the authors (A. A.) is grateful to the COMSATS, Islamabad, for scholarship. This work was supported by the Ministry of Science and Technology, Government of Pakistan, through a research grant to M.I.C. under the Pak-Kazakh bilateral research funds.

References