Int J Sports Med 2003; 24(1): 22-29
DOI: 10.1055/s-2003-37198
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Physical Activity, Hormone Replacement Therapy and Plasma Lipoprotein-Lipid Levels in Postmenopausal Women

J.  M.  Hagberg1, 2 , S.  D.  McCole1, 4 , R.  E.  Ferrell3 , J.  M.  Zmuda1 , K.  S.  Rodgers2 , K.  R.  Wilund2 , G.  E.  Moore1
  • 1Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
  • 2Department of Kinesiology, University of Maryland, College Park, MD, USA
  • 3Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
  • 4Department of Human Kinetics, University of Wisconsin-Milwaukee, Milwaukee, Wl, USA
Further Information

Publication History

Accepted after revision: March 15, 2002

Publication Date:
12 February 2003 (online)

Abstract

We assessed the cross-sectional associations between hormone replacement therapy (HRT), habitual physical activity levels and plasma lipoprotein-lipid levels in postmenopausal women. Sedentary (n = 19), active nonathlete (n = 20) and endurance-trained (n = 21) postmenopausal women, with half of each group on and half not on HRT, underwent assessments of plasma lipids, V˙O2max, body composition, diet and common genetic variants. The groups' physical characteristics were generally similar though body weight was higher in the active nonathletes, and body fat was lower and V˙O2max higher in the athletes. HRT was associated with beneficial total cholesterol, LDL-C and HDL-C levels in sedentary and active nonathlete women. Plasma lipoprotein-lipid profiles were similar in women athletes on and not on HRT, with their profiles being only slightly better than sedentary and physically-active women on HRT. After controlling for HRT status, V˙O2max was correlated with total cholesterol (r = -0.51, p = 0.0001), LDL-C (r = -0.52, p = 0.0001), HDL-C (r = 0.25, p = 0.055), HDL2-C (r = 0.24, p = 0.08) and TG levels (r = -0.46, p = 0.0001). After controlling for HRT status, % body fat was correlated with total cholesterol (r = 0.43, p = 0.001), LDL-C (r = 0.38, p = 0.003), HDL-C (r = -0.29, p = 0.025), HDL2-C (r = -0,26, p = 0.07) and TG levels (r = 0.40, p = 0.002). Dietary fat intake was similar among the groups. APO E genotype was only associated with plasma lipid profiles in athletes, as those with at least one APO E2 allele tended to have better lipid profiles than those with only APO E3 or E4 alleles. Thus, HRT, exercise training and body composition are associated with plasma lipid levels in postmenopausal women; common polymorphic variations at key lipid metabolism-related gene loci also may interact with exercise training to affect their plasma lipid profiles.

References

  • 1 Ahn Y, Kamboh M I, Hamman R F, Cole S A, Ferrell R E. Two DNA polymorphisms in the lipoprotein lipase gene and their associations with factors related to cardiovascular disease.  Journal of Lipid Research. 1993;  34 421-428
  • 2 Ahn Y I, Hamman R F, Ferrell R E, Kamboh M I. Association of lipoprotein lipase gene variation with the physiological components of the insulin-resistance syndrome in the population of the San Luis Valley, Colorado.  Diabetes Care. 1993;  16 1502-1506
  • 3 Altman E. Discriminant Analysis. John Wiley and Sons 1983: 102-104
  • 4 Binder E F, Birge S J, Kohrt W M. Effects of endurance exercise and hormone replacement therapy on serum lipids in older women.  Journal of American Geriatric Society. 1996;  44 231-236
  • 5 Cauley J A, Kriska A M, LaPorte R E, Sandler R B, Pambianco G. A two year randomized exercise trial in older women: effects on HDL-cholesterol.  Atherosclerosis. 1997;  66 247-258
  • 6 Gidez L, Miller G, Burstein M, Slagle S, Eder H. Separation and quantification of subclasses of human plasma high density lipoproteins by a simple precipitation procedure.  Journal of Lipid Research. 1982;  23 1206-1223
  • 7 Haddock B L, Hopp H P, Mason J J, Blix G, Blair S N. Cardiorespiratory fitness and cardiovascular disease risk factors in postmenopausal women.  Medicine and Science in Sports and Exercise. 1998;  30 893-898
  • 8 Hagberg J M, Ferrell R E, Katzel L I, Dengel D R, Sorkin J D, Goldberg A P. Apolipoprotein E genotype and exercise training-induced increases in plasma HDL- and HDL2-cholesterol levels.  Metabolism. 1998;  48 943-945
  • 9 Hagberg J M, Ferrell R E, Dengel D R, Wilund K R. Exercise training-induced blood pressure and plasma lipid improvements in hypertensives may be genotype dependent.  Hypertension. 1999;  34 18-23
  • 10 Hixson J, Vernier D. Restriction isotyping of apolipoprotein E by gene amplification and cleavage with Hhal.  Journal of Lipid Research. 1990;  31 545-548
  • 11 Hjortland M C, McNamara P M, Kannel W B. Some atherogenic concomitants of menopause: the Framingham Study.  American Journal of Epidemiology. 1976;  103 304-314
  • 12 Klebanoff R, Miller V T, Fernhall B. Effects of exercise and estrogen therapy on lipid profiles of postmenopausal women.  Medicine and Science in Sports and Exercise. 1998;  30 1028-1034
  • 13 Lindheim S R, Notelovitz M, Feldman E B, Larsen S, Khan F Y, Lobo R A. The independent effects of exercise and estrogen on lipids and lipoproteins in postmenopausal women.  Obstetrics and Gynecology. 1994;  83 167-172
  • 14 Lobo R. Effects of hormonal replacement on lipids and lipoproteins in postmenopausal women.  Journal of Clinical Endocrinology and Metabolism. 1991;  73 925-930
  • 15 McCole S D, Brown M D, Moore G E, Zmuda J M, Cwynar J, Hagberg J M. Enhanced cardiovascular hemodynamics in endurance-trained postmenopausal women.  Medicine and Science in Sports and Exercise. 2000;  32 1073-1079
  • 16 Meyers D, Goldberg A, Coon P, Drinkwater D, Bleecker E. Relationship of obesity and physical fitness to cardiopulmonary and metabolic function in healthy older men.  Journal of Gerontology. 1991;  46 M-57-65
  • 17 Pate R, Pratt M, Blair S, Haskell W, Macera C, Bouchard C, Buchner D, Ettinger W, Heath G, King A, Kriska A, Leon A, Marcus B, Morris J, Paffenbarger R J, Patrick K, Pollock M, Rippe J, Sallis J, Wilmore J. Physical Activity and Public Health.  JAMA. 1995;  273 402-407
  • 18 Seals D, Allen W, Hurley B, Dalsky G, Ehsani A, Hagberg J. Elevated high-density lipoprotein cholesterol levels in older endurance athletes.  American Journal of Cardiology. 1984;  54 390-393
  • 19 Seals D, Hagberg J, Hurley B, Ehsani A, Holloszy J. Endurance training in older men and women. 1. Cardiovascular responses to exercise.  Journal of Applied Physiology. 1984;  57 1024-1029
  • 20 Stevenson E T, Davy K P, Seals D R. Hemostatic, metabolic, and androgenic risk factors for coronary heart disease in physically active and less active postmenopausal women.  Thrombrosis and Vascular Biology. 1995;  15 669-677
  • 21 Taimela S, Lehtimaki T, Porkka K, Rasanen L, Viikari J. The effect of physical activity on serum total and low-density lipoprotein cholesterol concentration varies with apolipoprotein E phenotype in male children and young adults: The Cardiovascular Risk in Young Finns Study.  Metabolism. 1996;  45 797-803
  • 22 Warnick R, Benderson J, Albers J. Quantitation of high density lipoprotein subclasses after separation by dextran sulfate and Mg2++.  Clinical Chemistry. 1982;  28 1379-1388
  • 23 Wood P, Stefanick M. Exercise, fitness, and atherosclerosis. In: Bouchard C, Shephard RJ, Stephens T, Sutton JR, McPherson BD (eds.) Exercise, Fitness, and Health. Champaign, IL; Human Kinetics Press 1988: 409-423

J. Hagberg, PhD

Department of Kinesiology · University of Maryland

College Park, MD 20742-2611 · USA ·

Phone: +1-301-405-2487

Fax: +1-301-405-5578

Email: jh103@umail.umd.edu

    >