Int J Sports Med 2003; 24(5): 359-362
DOI: 10.1055/s-2003-40699
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Training Induced Alterations of Visual Evoked Potentials are not Related to Body Temperature

Y.  G.  Ozkaya1 , A.  Agar1 , G.  Hacioglu1 , P.  Yargiçoglu2 , I.  Abidin2 , U.  K.  Senturk1
  • 1Akdeniz University, Faculty of Medicine, Department of Physiology, Arapsuyu, Turkey
  • 2Akdeniz University, Faculty of Medicine, Department of Biophysics, Arapsuyu, Turkey
Further Information

Publication History

Accepted after revision: December 30, 2002

Publication Date:
17 July 2003 (online)

Abstract

The purpose of this study was to investigate the effect of mild chronic exercise on visual evoked potentials (VEPs). Twenty male Wistar rats were randomly divided into two groups: Control (C) and Exercise (E) groups. Exercise was performed on a motor-driven treadmill for 8 weeks. After 5 min of exercise, plasma lactic acid levels were determined. At the end of the experimental period, VEPs were recorded from E group twice: Five min (E-5 min) and 24 h (E-24 h) after the last bout of exercise. During visual evoked potential (VEP) recordings body temperature of the animals was kept constant to eliminate the effect of temperature changes. No difference was found between the lactic acid levels of two groups. The mean latencies of VEPs from E-5 min were shortened compared with the control group. The mean latencies of VEP components in E-24 h were observed to have returned to the control levels. Peak to peak amplitudes of VEPs were found to be unaltered among all measurements. We concluded that immediately after exercise, VEPs latencies were shortened independently from body temperature via unknown mechanisms. The latencies of VEPs were returned to control values after 24 h.

References

  • 1 Yaltkaya K, Balkan S, Baysal I. Visual evoked potentials in diabetes mellitus.  Acta Neurol Scand. 1988;  77 239-241
  • 2 Anastasi M, Lauricella M, Giordano C, Galluzo A. Visual evoked potentials in insulin-dependent diabetics.  Acta Diabetol Lat. 1985;  22 343-349
  • 3 Dorfman L J. Sensory evoked potentials: Clinical applications in medicine.  Ann Rev Med. 1983;  34 473-489
  • 4 Delpont E, Dolisi C, Suisse G, Bodino G, Gastaud M. Visual evoked potentials: Differences related to physical activity.  Int J Sports Med. 1997;  12 293-298
  • 5 Dustman R E, Emmerson R Y, Ruhling R O, Shearer D E, Steinhaus L A, Johnson S C, Bonekat H W, Shigeoka J W. Age, and fitness effects on EEG, ERPs, visual sensitivity and cognition.  Neurobiology of Aging. 1990;  11 193-200
  • 6 Hetzler B E, Boyes W K, Creason J, Dyer R S. Temperature dependent changes in visual evoked potentials of rats.  Clin Neurophysiol. 1988;  70 137-154
  • 7 Kainulainen H, Kamulainen J, Joost H G, Vikho V. Dissociation of the effects of training on oxidative metabolism, glucose utilization and GLUT-4 levels in skeletal muscle of Streptozotocin-diabetic rats.  Pflügers Archieve. 1994;  427 444-449
  • 8 Wilmore J H, Costill D L. Basic energy systems. In: Mauck S (ed) Physiology of Sport and Exercise. USA; 1994: 93-109
  • 9 Pilis W, Zarzeczny R, Langfort J, Kaciuba-Uścieko H, Nazar K, Wojtyna J. Anaerobic threshold in rats.  Comp Biochem Physiol. 1993;  106 285-289
  • 10 Magnie M N, Berman S, Martin F, Madany-Lounis M, Gestaud M, Dolisi C. Visual and auditory evoked potentials and maximal aerobic exercise: does the influence of exercise persist after body temperature recovery.  Int J Sports Med. 1998;  19 255-259
  • 11 Dyer R S, Jensen K F, Boyes W K. Focal lesions of visual cortex-effects on visual evoked potentials in rats.  Experimental Neurology. 1987;  95 100-115
  • 12 Sisson D F, Siegel J. Chloral hydrate anesthesia: EEG power spectrum analysis and effects on VEPs in the rat.  Neurotoxicol Teratol. 1989;  11 51-56
  • 13 Halliday A M, McDonald W I, Mushin J. Delayed visual evoked response in optic neuritis.  Lancet. 1972;  1 982-985
  • 14 Hudnell H K, Boyes W K, Otto D A. Rat and human visual-evoked potentials recorded under comparable conditions; a preliminary analysis to address the issue of predicting human neurotoxic effects from rat data.  Neurotoxicol Teratol. 1990;  12 391-398
  • 15 Boyes W K. Rat and human sensory evoked potentials and the predictability of human neurotoxicity from rat data.  Neurotoxicology. 1994;  15 569-578
  • 16 Senturk U K, Aktekin B, Kuru O, Gündüz F, Demir N, Aktekin M R. Effect of long-term swimming exercise on somatosensory evoked potentials in rats.  Brain Res. 2000;  887 (1) 199-202
  • 17 Yagi Y, Coburn K L, Estes K M. Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy.  Eur J Appl Physiol. 1999;  80 402-408
  • 18 Hatfield B D, Landers D M. Psychophysiology in exercise and sport research: An overview.  Exer Sports Rev. 1987;  15 351-387

Y. G. Ozkaya

Faculty of Medicine Department of Physiology · Akdeniz University

Arapsuyu · Turkey ·

Phone: +90-242-2274483

Fax: +90-242-2274495

Email: gulozk@yahoo.com

    >