Int J Sports Med 2003; 24(8): 576-581
DOI: 10.1055/s-2003-43274
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Time Limit and V·O2 Slow Component at Intensities Corresponding to V·O2max in Swimmers

R.  J.  Fernandes1 , C.  S.  Cardoso1 , S.  M.  Soares1 , A.  Ascensão1 , P.  J.  Colaço1 , J.  P.  Vilas-Boas1
  • 1Faculty of Sport Sciences and Physical Education, University of Porto, Portugal
Further Information

Publication History

Accepted after revision: April 7, 2003

Publication Date:
04 November 2003 (online)

Abstract

The purpose of this study was to measure, in swimming pool conditions and with high level swimmers, the time to exhaustion at the minimum velocity that elicits maximal oxygen consumption (TLim at vV·O2max), and the corresponding V·O2 slow component (O2SC). The vV·O2max was determined through an intermittent incremental test (n = 15). Forty-eight hours later, TLim was assessed using an all-out swim at vV·O2max until exhaustion. V·O2 was measured through direct oximetry and the swimming velocity was controlled using a visual light-pacer. Blood lactate concentrations and heart rate values were also measured. Mean V·O2max for the incremental test was 5.09 ± 0.53 l/min and the corresponding vV·O2max was 1.46 ± 0.06 m/s. Mean TLim value was 260.20 ± 60.73 s and it was inversely correlated with the velocity of anaerobic threshold (r = -0.54, p < 0.05). This fact, associated with the inverse relationship between TLim and vV·O2max (r = -0.47, but only for p < 0.10), suggested that swimmers’ lower level aerobic metabolic rate might be associated with a larger capacity to sustain that exercise intensity. O2SC reached 274.11 ± 152.83 l/min and was correlated with TLim (r = 0.54), increased ventilation in TLim test (r = 0.52) and energy cost of the respiratory muscles (r = 0.51), for p < 0.05. These data suggest that O2SC was also observed in the swimming pool, in high level swimmers performing at vV·O2max, and that higher TLim seems to correspond to higher expected O2SC amplitude. These findings seem to bring new data with application in middle distance swimming.

References

  • 1 Aaron E A, Seow K C, Johnson B D, Dempsey J A. Oxygen cost of exercise hyperpnoea: implications for performance.  J Appl Physiol. 1992;  72 1818-1825
  • 2 Adams G M. Exercise Physiology Laboratory Manual (3rd edition). WCB McGraw-Hill 1998: 155-181
  • 3 Barstow T J. Characterisation of V·O2 kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1327-1334
  • 4 Barstow T J, Molé P A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 1991;  71 2099-2106
  • 5 Billat V. V·O2 slow component and performance in endurance sports.  Br J Sports Med. 2000;  34 83-85
  • 6 Billat V, Koralsztein J P. Significance of the velocity at V·O2max and time to exhaustion at this velocity.  Sports Med. 1996;  22 90-108
  • 7 Billat V, Renoux J, Pinoteau J, Petit B, Koralsztein J. Reproducibility of running time to exhaustion at V·O2max in subelite runners.  Med Sci Sports Exerc. 1994;  2 254-257
  • 8 Billat V, Faina M, Sardella F, Marini C, Fanton F, Lupo S, Faccini P, de Angelis M, Koralsztein J P, Dalmonte A. A comparison of time to exhaustion at V·O2max in elite cyclists, kayak paddlers, swimmers and runners.  Ergonomics. 1996;  39 267-277
  • 9 Billat V, Richard R, Binsse V M, Koralsztein J, Haouzi P. The V·O2 slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue.  J Appl Physiol. 1998;  85 2118-2124
  • 10 Cardoso C, Fernandes R, Magalhães J, Santos P, Colaço P, Soares S, Carmo C, Barbosa T, Vilas-Boas J. Comparison of continuous and intermittent triangular protocols for direct V·O2max assessment in swimming. In: Proceedings of the IXth Symposium on Biomechanics and Medicine in Swimming. . Saint-Etienne (in press)
  • 11 Costill D, Kovaleski J, Porter D, Kirwan J, Fielding R, King D. Energy expenditure during front crawl swimming: predicting success in middle-distance events.  Int J Sports Med. 1985;  6 266-270
  • 12 Demarie S, Sardella F, Billat V, Magini W, Faina M. The V·O2 slow component in swimming.  Eur J Appl Physiol. 2001;  84 95-99
  • 13 Faina M, Billat V, Squadrone R, de Angelis M, Koralsztein J, Dal Monte A. Anaerobic contribution to the time to exhaustion at the minimal exercise intensity at which maximal oxygen uptake occurs in elite cyclists, kayakists and swimmers.  Eur J Appl Physiol. 1997;  76 13-20
  • 14 Fernandes R, Billat V, Cardoso C, Barbosa T, Soares S, Ascensão A, Colaço P, Demarle A, Vilas-Boas J. Time limit at vV·O2max and V·O2 slow component in swimming. A pilot study in university students. In: Proceedings of the IXth Symposium on Biomechanics and Medicine in Swimming. Saint-Etienne (in press)
  • 15 Gaesser G A, Poole D. The slow component of oxygen uptake kinetics in humans.  Exerc Sports Sci Rev. 1996;  24 35-70
  • 16 Hay J G, Carmo J. Swimming techniques used in the flume differ from those used in a pool. In: Proceedings of the XV International Society of Biomechanics Congress. University of Jyvaskyla 1995: 372-373
  • 17 Heck H, Mader A, Hess G, Mucke S, Miller R, Hollmann W. Justification of the 4-mmol/l lactate threshold.  Int J Sports Med. 1985;  6 117-130
  • 18 Holmér I, Lundin A, Eriksson B O. Maximum oxygen uptake during swimming and running by elite swimmers.  J Appl Physiol. 1974;  36 711-714
  • 19 Howley E T, Basseet T, Welch H G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 20 Koppo K, Bouckaert J. The decrease in the V·O2 slow component induced by prior exercise does not affect the time to exhaustion.  Int J Sports Med. 2002;  23 262-267
  • 21 Kuipers H, Verstappen F TJ, Keize H A, Guerten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates.  Int J Sports Med. 1985;  6 197-201
  • 22 McArdle W, Katch F, Pechar G. Comparison of continuous and discontinuous treadmill and bicycle tests for V·O2max values.  Med Sci Sports. 1973;  5 156-160
  • 23 Messonnier L, Freund H, Denis C, Dormois D, Dufour AB, Lacour JR. Time to exhaustion at V·O2 is related to the lactate exchange and removal abilities.  Int J Sports Med. 2002;  23 433-438
  • 24 Özyener F, Rossiter H B, Ward S A, Whipp B J. Influence of exercise intensity on the on- and off- transient kinetics of pulmonary oxygen uptake in humans.  J Physiol. 2001;  533 891-902
  • 25 Poole D, Schaffartzic W, Knigth D. Contribution of exercise legs to the slow component of oxygen uptake kinetics in humans.  J Appl Physiol. 1991;  71 1245-1253
  • 26 Smith D J, Norris S R, Hogg J M. Performance evaluation of swimmers. Scientific tools.  Sports Med. 2002;  32 539-554
  • 27 Stamford B A. Step increment versus constant load tests for determination of maximal oxygen uptake.  Eur J Appl Physiol. 1976;  35 89-93
  • 28 Toussaint H M, Meulemans A, de Groot G, Hollander A P, Schreurs A, Vervoorn K. Respiratory valve for oxygen uptake measurements during swimming.  Eur J Appl Physiol. 1987;  56 363-366
  • 29 Vilas-Boas J, Santos P. Comparison of swimming economy in three breaststroke techniques. In: Miyashita M, Mutoh Y, Richardson AB (eds.) Medicine and Science in Aquatic Sports. Medicine Sport Science 39. Basel: Karger 1994: 48-54
  • 30 Whipp B. The slow component of O2 uptake kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1319-1326
  • 31 Whipp B J, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work.  J Appl Physiol. 1972;  33 351-356

R. Fernandes

Faculty of Sport Sciences and Physical Education

University of Porto (Swimming Department) · Rua Plácido Costa, 91 · 4200 Porto · Portugal ·

Phone: +351 (22) 5074764

Fax: +351 (22) 5500689

Email: ricfer@fcdef.up.pt

    >