Z Gastroenterol 2004; 42(4): 333-338
DOI: 10.1055/s-2004-813072
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Die Rolle der Defensine in der Pathogenese chronisch-entzündlicher Darmerkrankungen

The Role of Defensins in the Pathogenesis of Inflammatory Bowel DiseaseM. Schmid1 , K. Fellermann1 , J. Wehkamp1 , K. Herrlinger1 , E. F. Stange1
  • 1Abteilung Innere Medizin I, Robert-Bosch-Krankenhaus, Stuttgart
Further Information

Publication History

Manuskript-Eingang: 31. Dezember 2003

Annahme nach Revision: 11. März 2004

Publication Date:
19 April 2004 (online)

Zusammenfassung

Defensine sind endogene antimikrobielle Peptide mit breitem Wirkungsspektrum. Bereits mikromolare Konzentrationen reichen aus, um gramnegative und grampositive Bakterien, aber auch Mykobakterien sowie Pilze (z. B. Candida), Viren (z. B. Herpes) und Protozoen (z. B. Giardia lamblia) effektiv abzutöten. Als wichtiger Teil des angeborenen Immunsystems werden sie im Darmepithel exprimiert und tragen somit zur Aufrechterhaltung der intestinalen Mucosabarriere bei. Diese scheint bei chronisch entzündlichen Darmerkrankungen defekt zu sein, da einerseits die Immunantwort gegen die „normale” luminale Bakterienflora gerichtet ist, andererseits bei diesen Erkrankungen mucosal-adhärente und invasive Bakterien beobachtet werden. Eine mögliche Erklärung für diese Phänomene beruht auf einer defekten Defensinexpression. Tatsächlich findet sich bei M. Crohn mit Befall des terminalen Ileum, insbesondere bei einer Mutation im NOD2-Gen, eine verminderte α-Defensinexpression (humane Defensine 5 und 6) und im entzündeten Colon eine im Vergleich zur Colitis ulcerosa verminderte β-Defensinantwort (humane β-Defensine 2 und 3). Dies könnte durch Beeinträchtigung der chemischen Mucosabarriere zu einer vermehrten bakteriellen Invasion in die Darmschleimhaut führen und als eigentliche Ursache für die adäquate Entzündungsantwort betrachtet werden. Trotz des noch fehlenden Nachweises, dass diese beeinträchtigte Defensinbildung auch zu einer verminderten antibakteriellen Aktivität der Darmschleimhaut führt, ist ein Defensinmangelsyndrom das derzeit plausibelste Pathogenesekonzept des Morbus Crohn.

Abstract

Defensins are endogenous antimicrobial peptides with a broad activity spectrum. Even at micromolar concentrations gramnegative and grampositive bacteria, but also mycobacteria, as well as fungi (candida), viruses (herpes) and protozoa (giardia lamblia) are destroyed. As part of the innate immune system defensins are expressed by the intestinal epithelium and contribute to the maintenance of the mucosal barrier. This barrier appears to be defective in inflammatory bowel diseases since on one hand, the immune response is directed against the “normal” luminal bacterial flora and on the other hand, mucosal adherent and invasive bacteria have been observed in these diseases. A defective defensin expression may well explain these phenomena. Indeed, Crohn’s disease of the terminal ileum, especially if associated with a NOD2 mutation, is characterised by a diminished α-defensin (human defensin 5 and 6) expression, and in inflamed Crohn’s colitis, in contrast to ulcerative colitis, the β-defensin (human β-defensins 2 and 3) response is reduced. Through a deficient chemical mucosal barrier this defect could lead to increased bacterial invasion into the intestinal mucosa and might well explain an adequate inflammatory response. Although the final proof that this deficient defensin response leads to a reduced antibacterial activity of the intestinal mucosa is still lacking, the most plausible concept of pathogenesis of Crohn’s disease is a defensin deficiency syndrome.

Literatur

  • 1 Moss M T, Sanderson J D, Tizard M L. et al . Polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp silvaticum in long term cultures from Crohn’s disease and control tissues.  Gut. 1992;  33 1209-1213
  • 2 McFadden J J, Butcher P D, Chiodini R. et al . Crohn’s disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between mycobacterial species.  J Clin Microbiol. 1987;  25 796-801
  • 3 Ryan P, Bennett M W, Aarons S. et al . PCR detection of Mycobacterium paratuberculosis in Crohn’s disease granulomas isolated by laser capture microdissection.  Gut. 2002;  51 665-670
  • 4 Liu Y, van Kruiningen H J, West A B. et al . Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease.  Gastroenterology. 1995;  108 1396-1404
  • 5 Darfeuille-Michaud A, Neut C, Barnich N. et al . Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease.  Gastroenterology. 1998;  115 1405-1413
  • 6 Wakefield A J, Ekbom A, Dhillon A P. et al . Crohn’s disease: pathogenesis and persistent measles virus infection.  Gastroenterology. 1995;  108 911-916
  • 7 Neut C, Bulois P, Desreumaux P. et al . Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn’s disease.  Am J Gastroenterol. 2002;  97 939-946
  • 8 Janowitz H D, Croen E C, Sachar D B. The role of the fecal stream in Crohn’s disease: an historical and analytic review.  Inflamm Bowel Dis. 1998;  4 29-39
  • 9 D’Haens G R, Geboes K, Peeters M. et al . Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum.  Gastroenterology. 1998;  114 262-267
  • 10 Sellon R K, Tonkonogy S, Schultz M. et al . Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice.  Infect Immun. 1998;  66 5224-5231
  • 11 Swidsinski A, Ladhoff A, Pernthaler A. et al . Mucosal flora in inflammatory bowel disease.  Gastroenterology. 2002;  122 44-54
  • 12 Duchmann R, Kaiser I, Hermann E. et al . Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD).  Clin Exp Immunol. 1995;  102 448-455
  • 13 Seksik P, Rigottier-Gois L, Gramet G. et al . Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon.  Gut. 2003;  52 237-242
  • 14 Boman H G. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review.  Scand J Immunol. 1998;  48 15-25
  • 15 Fellermann K, Stange E F. Defensins innate immunity at the epithelial frontier.  Eur J Gastroenterol Hepatol. 2001;  13 771-776
  • 16 Cunliffe R N, Mahida Y R. Antimicrobial peptides in innate intestinal host defence.  Gut. 2000;  47 16-17
  • 17 Lehrer R I, Ganz T. Defensins of vertebrate animals.  Curr Opin Immunol. 2002;  14 96-102
  • 18 Harder J, Siebert R, Zhang Y. et al . Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1.  Genomics. 1997;  46 472-475
  • 19 Liu L, Zhao C, Heng H H. et al . The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry.  Genomics. 1997;  43 316-320
  • 20 Liu L, Wang L, Jia H P. et al . Structure and mapping of the human beta-defensin HBD-2 gene and its expression at sites of inflammation.  Gene. 1998;  222 237-244
  • 21 Wilson C L, Ouellette A J, Satchell D P. et al . Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense.  Science. 1999;  286 113-117
  • 22 Becker M N, Diamond G, Verghese M W. et al . CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium.  J Biol Chem. 2000;  275 29 731-29 736
  • 23 Diamond G, Kaiser V, Rhodes J. et al . Transcriptional regulation of beta-defensin gene expression in tracheal epithelial cells.  Infect Immun. 2000;  68 113-119
  • 24 Ogura Y, Bonen D K, Inohara N. et al . A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease.  Nature. 2001;  411 603-606
  • 25 Hugot J P, Chamaillard M, Zouali H. et al . Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.  Nature. 2001;  411 599-603
  • 26 Ogura Y, Inohara N, Benito A. et al . Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB.  J Biol Chem. 2001;  276 4812-4818
  • 27 Hisamatsu T, Suzuki M, Reinecker H C. et al . CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells.  Gastroenterology. 2003;  124 993-1000
  • 28 Porter E M, van Dam E, Valore E V. et al . Broad-spectrum antimicrobial activity of human intestinal defensin 5.  Infect Immun. 1997;  65 2396-2401
  • 29 Harder J, Bartels J, Christophers E. et al . A peptide antibiotic from human skin.  Nature. 1997;  387 861
  • 30 Harder J, Bartels J, Christophers E. et al . Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic.  J Biol Chem. 2001;  276 5707-5713
  • 31 Garcia J R, Jaumann F, Schulz S. et al . Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction.  Cell Tissue Res. 2001;  306 257-264
  • 32 Fujii G, Selsted M E, Eisenberg D. Defensins promote fusion and lysis of negatively charged membranes.  Protein Sci. 1993;  2 1301-1312
  • 33 Wimley W C, Selsted M E, White S H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.  Protein Sci. 1994;  3 1362-1373
  • 34 Salzman N H, Ghosh D, Huttner K M. et al . Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin.  Nature. 2003;  422 522-526
  • 35 Salzman N H, Chou M M, de Jong H. et al . Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression.  Infect Immun. 2003;  71 1109-1115
  • 36 Smith J J, Travis S M, Greenberg E P. et al . Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid.  Cell. 1996;  85 229-236
  • 37 Goldman M J, Anderson G M, Stolzenberg E D. et al . Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis.  Cell. 1997;  88 553-560
  • 38 Ong P Y, Ohtake T, Brandt C. et al . Endogenous antimicrobial peptides and skin infections in atopic dermatitis.  N Engl J Med. 2002;  347 1151-1160
  • 39 Cunliffe R N, Kamal M, Rose F R. et al . Expression of antimicrobial neutrophil defensins in epithelial cells of active inflammatory bowel disease mucosa.  J Clin Pathol. 2002;  55 298-304
  • 40 Wehkamp J, Schwind B, Herrlinger K R. et al . Innate immunity and colonic inflammation: enhanced expression of epithelial alpha-defensins.  Dig Dis Sci. 2002;  47 1349-1355
  • 41 Cunliffe R N, Rose F R, Keyte J. et al . Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease.  Gut. 2001;  48 176-185
  • 42 Lawrance I C, Fiocchi C, Chakravarti S. Ulcerative colitis and Crohn’s disease: distinctive gene expression profiles and novel susceptibility candidate genes.  Hum Mol Genet. 2001;  10 445-456
  • 43 Wehkamp J, Harder J, Weichenthal M. et al . Pathomechanism of Crohn’s disease NOD2 (CARD 15) mutation: Deficient mucosal antimicrobial peptide (defensin) expression.  Gut. 2003;  52 (Suppl VI) A1 (OP-G-2, abstract)
  • 44 Ogura Y, Lala S, Xin W. et al . Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis.  Gut. 2003;  52 1591-1597
  • 45 O’Neil D A, Porter E M, Elewaut D. et al . Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium.  J Immunol. 1999;  163 6718-6724
  • 46 Wehkamp J, Fellermann K, Herrlinger K R. et al . Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease.  Eur J Gastroenterol Hepatol. 2002;  14 745-752
  • 47 Wehkamp J, Harder J, Weichenthal M. et al . Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis.  Inflamm Bowel Dis. 2003;  9 215-223
  • 48 Fahlgren A, Hammarstrom S, Danielsson A. et al . Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis.  Clin Exp Immunol. 2003;  131 90-101
  • 49 Ursing B, Alm T, Barany F. et al . A comparative study of metronidazole and sulfasalazine for active Crohn’s disease: the cooperative Crohn’s disease study in Sweden. II. Result.  Gastroenterology. 1982;  83 550-562
  • 50 Sutherland L, Singleton J, Sessions J. et al . Double blind, placebo controlled trial of metronidazole in Crohn’s disease.  Gut. 1991;  32 1071-1075
  • 51 Colombel J F, Lemann M, Cassagnou M. et al . A controlled trial comparing ciprofloxacin with mesalazine for the treatment of active Crohn’s disease. Groupe d’Etudes Therapeutiques des Affections Inflammatoires Digestives (GETAID).  Am J Gastroenterol. 1999;  94 674-678
  • 52 Prantera C, Zannoni F, Scribano M L. et al . An antibiotic regimen for the treatment of active Crohn’s disease: a randomized, controlled clinical trial of metronidazole plus ciprofloxacin.  Am J Gastroenterol. 1996;  91 328-332
  • 53 Arnold G L, Beaves M R, Pryjdun V O. et al . Preliminary study of ciprofloxacin in active Crohn’s disease.  Inflamm Bowel Dis. 2002;  8 10-15
  • 54 Rutgeerts P, Hiele M, Geboes K. et al . Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection.  Gastroenterology. 1995;  108 1617-1621
  • 55 Prantera C, Scribano M L, Falasco G. et al . Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn’s disease: a randomised controlled trial with Lactobacillus GG.  Gut. 2002;  51 405-409
  • 56 Jakobovits J, Schuster M M. Metronidazole therapy for Crohn’s disease and associated fistulae.  Am J Gastroenterol. 1984;  79 533-540
  • 57 Brandt L J, Bernstein L H, Boley S J. et al . Metronidazole therapy for perineal Crohn’s disease: a follow-up study.  Gastroenterology. 1982;  83 383-387
  • 58 Mantzaris G J, Archavlis E, Christoforidis P. et al . A prospective randomized controlled trial of oral ciprofloxacin in acute ulcerative colitis.  Am J Gastroenterol. 1997;  92 454-456
  • 59 Mantzaris G J, Petraki K, Archavlis E. et al . A prospective randomized controlled trial of intravenous ciprofloxacin as an adjunct to corticosteroids in acute, severe ulcerative colitis.  Scand J Gastroenterol. 2001;  36 971-974
  • 60 Chapman R W, Selby W S, Jewell D P. Controlled trial of intravenous metronidazole as an adjunct to corticosteroids in severe ulcerative colitis.  Gut. 1986;  27 1210-1212
  • 61 Mantzaris G J, Hatzis A, Kontogiannis P. et al . Intravenous tobramycin and metronidazole as an adjunct to corticosteroids in acute, severe ulcerative colitis.  Am J Gastroenterol. 1994;  89 43-46
  • 62 Turunen U M, Farkkila M A, Hakala K. et al . Long-term treatment of ulcerative colitis with ciprofloxacin: a prospective, double-blind, placebo-controlled study.  Gastroenterology. 1998;  115 1072-1078
  • 63 Kruis W, Schutz E, Fric P. et al . Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis.  Aliment Pharmacol Ther. 1997;  11 853-858
  • 64 Rembacken B J, Snelling A M, Hawkey P M. et al . Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial.  Lancet. 1999;  354 635-639
  • 65 Schlee M, Wehkamp J, Harder J. et al . Das Probiotikum E. coli Nissle 1917 induziert humanes beta Defensin-2 in Abhängigkeit von NFkB in intestinalen Epithelzellen.  Z Gastroenterol. 2003;  41 734 (abstract)
  • 66 Sartor R B. Innate immunity in the pathogenesis and therapy of IBD.  J Gastroenterol. 2003;  38 43-47
  • 67 Fellermann K, Wehkamp J, Herrlinger K R. et al . Crohn’s disease: a defensin deficiency syndrome?.  Eur J Gastroenterol Hepatol. 2003;  15 627-634

Prof. Dr. Eduard F. Stange

Robert-Bosch-Krankenhaus, Abteilung Innere Medizin I

Auerbachstr. 110

70376 Stuttgart

Germany

Email: eduard.stange@rbk.de

    >