Int J Sports Med 2004; 25(4): 252-256
DOI: 10.1055/s-2004-819934
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Attenuated ANF Response to Exercise in Athletes with Exercise-Induced Hypoxemia

F. Durand1, 2 , P. Mucci3 , M. Hayot2 , I. Couret4 , A. Bonnardet5 , Ch. Préfaut2
  • 1Laboratoire Sport, Santé, Altitude, Département STAPS, Font-Romeu, France
  • 2Laboratoire de Physiologie des Interactions, Hôpital A. de Villeneuve, Montpellier, France
  • 3Laboratoire d’Analyse Multidisciplinaire des Pratiques Sportives, U.F.R.S.T.A.P.S. Liévin, France
  • 4Service Central de Médecine Nucléaire, Hôpital Lapeyronie, Montpellier, France
  • 5Service de Biochimie, Hôpital Lapeyronie, Montpellier, France
Further Information

Publication History

Accepted after revision: June 30, 2003

Publication Date:
26 May 2004 (online)

Abstract

Some highly trained endurance athletes develop an exercise-induced hypoxemia (EIH) at least partially due to a hemodynamic factor with a potential stress failure on pulmonary capillaries. Atrial natriuretic factor (ANF) is a pulmonary vasodilatator and its release during exercise could be reduced with endurance training. We hypothesized that athletes exhibiting EIH, who have a greater training volume than non-EIH athletes, have a reduced ANF release during exercise explaining the pathophysiology of EIH. Ten highly trained EIH-athletes (HT-EIH), ten without EIH (HT-nEIH), and nine untrained (UT) males performed incremental exercise to exhaustion. No between group differences occurred in resting ANF plasma levels. In contrast to HT-nEIH and UT (p < 0.05), HT-EIH showed a smaller increase in ANF concentration between rest and maximal exercise (HT-EIH: 8.12 ± 0.69 vs. 14.1 ± 1.86 pmol × l-1; HT-nEIH: 10.46 ± 1 vs. 18.7 ± 1.8 pmol × l-1; UT: 6.23 ± 0.95 vs. 20.38 ± 2.79 pmol × l-1). During the recovery, ANF levels decreased significantly in HT-nEIH and UT groups (p < 0.05). Electrolyte values increased in all groups during exercise but were higher in both trained groups. In conclusion, this study suggested that ANF response to exercise may be important for exercise-induced hypoxemia.

References

  • 1 Adnot S, Chabrier D, Andrivet P, Viossat I, Piquet J, Brun-Bouissou C. Atrial natriuretic peptide concentrations and pulmonary hemodynamics in patients with pulmonary artery hypertension.  Am Rev Respir Dis. 1987;  136 951-956
  • 2 Anthonisen N, Fleetham J. Ventilation: total, alveolar, and dead space.  In: Handbook of Physiology. Section 3, The respiratory system. Vol IV, Gas exchange.  Am Physiol Soc 1987: 113-129
  • 3 Anversa P, Ricci R, Olivetti G. Effects of exercise on the capillary vasculature of the heart.  Circulation. 1987;  75 S1-12
  • 4 Azizi C, Bouissou P, Galen F X, Lattion A L, Lartigue M, Carayon A. Alterations in atrial natriuretic peptide gene expression during endurance training in rats.  Eur J Endocrinol. 1995;  133 361-365
  • 5 Bates E, Schenker Y, Grekin R. The relationship between plasma levels of immunoreactive atrial natriuretic hormone and hemodynamic function in man.  Circulation. 1986;  73 1155-1161
  • 6 Bolli P, Mueller F, Linder L. The vasodilatator potency of atrial natriuretic peptide in man.  Circulation. 1987;  75 221-228
  • 7 Brenner B, Ballermann B, Gunning M, Zeidel M. Diverse biological actions of atrial natriuretic peptide.  Physiol Rev. 1990;  70 665-698
  • 8 Caillaud C, Serre-Cousiné O, Anselme F. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon.  J Appl Physiol. 1995;  79 1226-1232
  • 9 Caillaud C, Anselme F, Préfaut C. Effects of two successive maximal exercise tests on pulmonary gas exchange in athletes.  Eur J Appl Physiol. 1996;  74 141-147
  • 10 Chwalbinska-Moneta J, Hanninem O. Effect of active warming-up on the termoregulatory, circulatory, and metabolic response to incremental exercise in endurance-trained athletes.  Int J Sports Med. 1989;  10 25-29
  • 11 Convertino V. Blood volume: its adaptation to endurance training.  Med Sci Sports Exerc. 1991;  23 1338-1348
  • 12 Convertino V, Keil L, Bernauer E, Greenleaf J. Plasma volume, osmolality, vasopressin and renin activity during graded exercise in man.  J Appl Physiol. 1981;  50 123-128
  • 13 Cosby R, Sophocles A, Durr J, Perrinjaquet C, Yee B, Schrier R. Elevated plasma atrial natriuretic factor and vasopressin in high-altitude pulmonary edema.  Ann Int Med. 1988;  109 796-799
  • 14 Dempsey J A, Hanson P, Hendersen K. Exercise induced arterial hypoxemia in healthy human subjects at sea level.  J Appl Physiol. 1984;  355 161-175
  • 15 Durand F, Mucci P, Safont L, Préfaut C. Effects of nitric oxide inhalation on pulmonary gas exchange during exercise in highly trained athletes.  Acta Physiol Scand. 1999;  165 169-176
  • 16 Durand F, Mucci P, Préfaut C. Evidence for an inadequate hyperventilation inducing arterial hypoxemia at submaximal exercise in all highly trained endurance athletes.  Med Sci Sports Exerc. 2000;  32 926-932
  • 17 Fareh J, Gabrion J, Herbute S, Gauquelin G, Gutkowska J, Gharib C. Heart and plasma atrial natriuretic peptide (ANP) in response to long-term endurance training in rats.  Peptides. 1992;  13 355-363
  • 18 Fellman N. Hormonal and plasma volume alterations following endurance exercise.  Sports Med. 1992;  13 37-49
  • 19 Freund B, Claybaugh J, Dice M, Hashiro G. Hormonal and vascular fluid responses to maximal exercise in trained and untrained males.  J Appl Physiol. 1987;  63 669-675
  • 20 Hanel B, Teunissen I, Rabol A, Warberg J, Secher N H. Restricted postexercise pulmonary diffusion in capacity and central blood volume depletion.  J Appl Physiol. 1997;  83 11-17
  • 21 Harms C, Mc C laran, Nickele G, Pegelow D, Nelson W, Dempsey J. Effect of exercise-induced arterial O2 desaturation on VO2max in women.  Med Sci Sports Exerc. 2001;  32 1101-1108
  • 22 Holmgreen A, McIlroy M B. Effect of body temperature on arterial blood gas tensions and pH during exercise.  Respir Physiol. 1991;  83 143-154
  • 23 Hughes A, Nielsen H, Thom S, Martin G, Sever P. The effect of atrial natriuretic peptide on human blood vessels.  J Hypertension. 1987;  5 551-553
  • 24 Kokonnen U M, Hackzell M, Rasanen L A. Plasma atrial natriuretic peptide in standardbred and finnhorses trotters during and after exercise.  Acta Physiol Scand. 1995;  154 51-58
  • 25 Lehmann M, Dickhuth H, Schmid P, Porzig H, Keul J. Plasma catecholamines, beta-adrenergic receptors, and isoproterenol sensitivity in endurance trained and non-endurance trained volunteers.  Eur J Appl Physiol Occup Physiol. 1984;  52 362-369
  • 26 Lordick F, Hauck R, Senekowitsch R, Emslander H. Atrial natriuretic peptide in acute hypoxia-exposed healthy subjects and in hypoxaemic patients.  Eur Respir J. 1995;  8 216-221
  • 27 Mucci P, Anselme-Poujol F, Caillaud C, Couret I, Rossi M, Prefaut C. Basophil releasability in young highly trained and older athletes.  Med Sci Sports Exerc. 1999;  31 507-513
  • 28 Mucci P, Durand F, Lebel B, Bousquet J, Prefaut C. Interleukins 1-beta, -8 and histamine increases in highly trained, exercising athletes.  Med Sci Sports Exerc. 2000;  32 1094-1100
  • 29 Mucci P, Durand F, Lebel B, Bousquet J, Prefaut C. Basophils and exercise-induced hypoxemia in extreme athletes.  J Appl Physiol. 2001;  90 989-996
  • 30 Petzl D, Hartter E, Glogar D, Rimpfl T, Woloszczuk W, Haber P. Characteristics of human atrial natriuretic peptide release during exercise in normal persons, cardiac patients, and endurance-trained athletes. In: Brenner BM, Laragh JH (eds) American Society of Hypertension Series. Vol 2: Biologically active atrial peptides. New York: Raven Press 1989: 471-474
  • 31 Pluim B M, Zwinderman A, van der Laarse A, van der Wall E. The athlete’s heart. A meta-analysis of cardiac structure and function.  Circulation. 2000;  101 336-344
  • 32 Prefaut C, Bourgouin Karaouni D, Ramonatxo M, Michel F B, Macabies J. A one-year double-blind follow-up of blood gas tensions and haemodynamics in almitrine bismesylate therapy.  Eur Resp J. 1988;  1 41-50
  • 33 Préfaut C, Anselme-Poujol F, Caillaud C. Inhibition of histamine release by nedocromil sodium reduces exercise-induced hypoxemia in master athletes.  Med Sci Sports Exerc. 1997;  29 10-16
  • 34 Rogers P, Tyce G, Bailey K, Bove A. Exercise-induced increases in atrial natriuretic factor are attenuated by endurance training.  J Am Coll Cardiol. 1991;  18 1236-1241
  • 35 Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism.  Pharmacol Rev. 1992;  44 479-602
  • 36 Saito Y, Kazuma N, Sugawara A, Nishimura K. Atrial natriuretic polypeptide during exercise in healthy man.  Acta Endocrinol. 1987;  116 59-65
  • 37 Schaffartzik W, Arcos J, Tsukimoto K, Mathieu-Costello O, Wagner P D. Pulmonary interstitial edema in the pig after heavy exercise.  J Appl Physiol. 1993;  75 2535-2540
  • 38 Shenker Y, Sider R, Ostafin E, Grekin R. Plasma levels of immunoreactive ANF in healthy subjects and patients with edema.  J Clin Invest. 1985;  76 1684-1687
  • 39 Schmidt W, Brabant G, Kröger C, Strauch S, Hilgendorf A. Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions.  Eur J Appl Physiol. 1990;  61 398-407
  • 40 Toft E, Ernst E, Espersen G, Kalund S. Plasma atrial natriuretic peptide in elite runners.  Int J Sports Med. 1990;  11 215-217
  • 41 Young M, Sciurba F, Rinaldo J. Delirium and pulmonary edema after completing a marathon.  Am Rev Respir Dis. 1987;  136 737-739
  • 42 West J B, Mathieu-Costello O. Stress failure of pulmonary capillaries as a limiting factor for maximal exercise.  Eur J Appl Physiol. 1995;  70 99-108
  • 43 Whipp B, Wasserman K. Effect of body temperature on the ventilatory response to exercise.  Respir Physiol. 1970;  8 354-360

F. Durand

Laboratoire Sport Santé Altitude · Département STAPS

66120 Font-Romeu · France

Phone: +33 468 308 074

Fax: +33 468 308 076

Email: fdurand@univ-perp.fr

    >