Aktuelle Ernährungsmedizin 2005; 30(2): 93-98
DOI: 10.1055/s-2004-834734
Originalbeitrag
© Georg Thieme Verlag KG Stuttgart · New York

Auswirkung von Hyperglykämie und Diabetes auf die ischämische Präkonditionierung

Effect of Hyperglycaemia and Diabetes Mellitus on Ischaemic PreconditioningD.  Ebel1 , B.  Preckel1 , W.  Schlack1
  • 1Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf
Manuskript nach einem Vortrag bei dem 22. Gemeinsamen Kongress von DGEM, AKE und GESKES ernährung 2004 in München vom 6. - 8.6.2004
Further Information

Publication History

Publication Date:
14 April 2005 (online)

Zusammenfassung

Patienten mit Diabetes mellitus (DM) erleiden häufiger einen Myokardinfarkt als Nicht-Diabetiker. Zusätzlich ist bei diesen Patienten nach einem Infarkt die Letalität deutlich erhöht und die Langzeitprognose verschlechtert. Die ischämische Präkonditionierung (PC) ist der stärkste endogene Protektionsmechanismus des Myokards, bei dem kurze Ischämien das Herz gegen die Folgen nachfolgender Ischämien schützen. Man unterscheidet hierbei eine frühe Phase der Protektion (frühe PC, EPC), die sofort nach der präkonditionierenden Ischämie einsetzt und das Herz für 2 - 3 Stunden schützt, und eine späte Phase der Protektion (späte PC, LPC), die nach 12 - 24 Stunden einsetzt und dann mehrere Tage anhält. Ursache für die schlechte Prognose von Diabetikern mit Myokardinfarkt könnte die Blockade des myokardialen Schutzes durch PC sein. So ist im Gegensatz zu Nicht-Diabetikern bei Infarktpatienten mit DM eine Präinfarktangina nicht mit einem verringerten Zellschaden, besserer linksventrikulärer Funktion oder reduzierter Letalität assoziiert. Tierexperimentell konnte gezeigt werden, dass eine kurzfristige Hyperglykämie und ein DM sowohl die Protektion durch EPC als auch durch LPC aufheben. Es wird vermutet, dass die Blockade mitochondrialer ATP-sensitiver Kaliumkanäle (KATP) durch die Hyperglykämie hier eine wichtige Rolle spielen. Allerdings gibt es Hinweise, dass ein DM an weiteren Stellen in die Signaltransduktionskaskade der Präkonditionierung eingreift. Der Schutz durch LPC konnte nach einer kurzfristigen Blutzuckersenkung mit Insulin nicht wiederhergestellt werden, während eine längere 2-wöchige Insulintherapie sowohl den Schutz von EPC als auch von LPC rekrutieren konnte. Da die Aufhebung der PC auch beim Menschen wahrscheinlich ist, könnte dies die schlechte Prognose von Diabetikern nach Myokardinfarkt zumindest teilweise erklären. Zum Verständnis des Mechanismus dieser Blockade sind weitere Untersuchungen notwendig.

Abstract

The incidence of myocardial infarction (MI) in patients with diabetes mellitus (DM) is higher than in patients without DM. Additionally, mortality is higher and long-term prognosis is worse in diabetic patients with MI compared with non-diabetic patients. Ischaemic preconditioning (PC) which is triggered by a short period of ischaemia (like during angina) is the strongest endogenous mechanism protecting the myocardium against the consequences of a subsequent ischaemia. There are two phases of protection: an early phase (early PC, EPC), which starts immediately after the preconditioning ischaemia and lasts for 2 - 3 hours; and a late phase of protection starting after 12 - 24 hours and lasting for days (late PC, LPC). A blockade of the protection provided by PC may be the cause for the poor prognosis of diabetic patients with MI. In contrast to patients without DM, in diabetic patients, pre-infarct angina is not associated with smaller cellular damage, better left ventricular performance, or reduced mortality. In animal studies, it was shown that short-term hyperglycaemia and DM abolish the protection by EPC as well as LPC. It is assumed that the inhibition of ATP-sensitive potassium channels (KATP) by hyperglycaemia plays an important role in this setting. However, some findings suggest that this is not the only site of blockade in the signal transduction cascade of PC. The protection by LPC could not be restored by short-term insulin treatment, while protection by both EPC and LPC was restored after two weeks of insulin treatment. The blockade of PC is also very likely in diabetic patients and may even partly explain the poor prognosis of these patients after MI. Further studies are needed to elucidate the mechanism of the blockade of PC.

Literatur

  • 1 Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas A M, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization Monica Project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in 4 continents.  Circulation. 1990;  90 583-612
  • 2 Feskens E J, Kromhout D. Glucose tolerance and the risk of cardiovascular disease: the Zutphen Study.  J Clin Epidemiol. 1992;  45 1327-1334
  • 3 Kannel W B, McGee D L. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham Study.  Diabetes Care. 1979;  2 120-126
  • 4 Jelesoff N E, Feinglos M, Granger C B, Califf R M. Outcomes of diabetic patients following acute myocardial infarction: a review of the major thrombolytic trials.  Coron Artery Dis. 1996;  7 732-743
  • 5 Haffner S M, Lehto S, Ronnemaa T, Pyorala K. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction.  N Engl J Med. 2001;  339 229-234
  • 6 Orlander P R, Goff D C, Morrissey M, Ramsey D J, Wear M L, Labarthe D R, Nichaman M Z. The relation of diabetes to the severity of acute myocardial infarction and post-myocardial infarction survival in Mexican-Americans and non-Hispanic whites. The Corpus Christi Heart Project.  Diabetes. 1994;  43 897-902
  • 7 Bellodi G, Manicardi V, Malavasi V, Veneri L, Bernini G, Bossini P, Distefano S, Magnanini G, Muratori L, Rossi G, Zuarini A. Hyperglycemia and prognosis of acute myocardial infarction in patients without diabetes mellitus.  Am J Cardiol. 1989;  64 885-888
  • 8 Malmberg K, Ryden L, Hamsten A, Herlitz J, Waldenström A, Wedel H. Mortality prediction in diabetic patients with myocardial infarction: experience from the DIGAMI study.  Cardiovasc Res. 1997;  34 248-253
  • 9 Malmberg K, Norhammar A, Wedel H, Ryden L. Glycometabolic State at Admission: Important Risk Marker of Mortality in Conventionally Treated Patients With Diabetes Mellitus and Acute Myocardial Infarction: Long-Term Results From the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) Study.  Circulation. 1999;  99 2626-2632
  • 10 Oswald G A, Smith C C, Betteridge D J, Yudkin J S. Determinants and importance of stress hyperglycaemia in non-diabetic patients with myocardial infarction.  Br Med J (Clin Res Ed). 1986;  293 917-922
  • 11 Fava S, Aquilina O, Azzopardi J, Muscat H, Fenech F. The prognostic value of blood glucose in diabetic patients with acute myocardial infarction.  Diabetic Med. 1996;  13 80-83
  • 12 Beckman J A, Creager M A, Libby P. Diabetes and atherosclerosis.  JAMA. 2002;  287 2570-2581
  • 13 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;  74 1124-1136
  • 14 Shiki K, Hearse D J. Preconditioning of ischemic myocardium: reperfusion induced arrhythmias.  Am J Physiol. 1987;  253 H1470-H1476
  • 15 Schulz R, Post H, Sakka S, Wallbridge D R, Heusch G. Intraischemic preconditioning. Increased tolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion.  Circ Res. 1995;  76 942-950
  • 16 Winkle D M Van, Thornton J D, Downey J M. Cardioprotection from ischemic preconditioning is lost following prolonged reperfusion in the rabbit.  Coron Artery Dis. 1991;  2 613-619
  • 17 Arstall M A, Zhao Y Z, Hornberger L, Kennedy S P, Buchholz R A, Osathanondh R, Kelly R A. Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischemia.  J Mol Cell Cardiol. 1998;  30 1019-1025
  • 18 Qiu Y M, Tang X L, Park S W, Sun J Z, Kalya A, Bolli R. The early and late phases of ischemic preconditioning - A comparative analysis of their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs undergoing a 40-minute coronary occlusion.  Circ Res. 1997;  80 730-742
  • 19 Rizvi A, Tang X L, Qiu Y, Xuan Y T, Takano H, Jadoon A K, Bolli R. Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning in conscious rabbits.  Am J Physiol. 1999;  277 H874-H884
  • 20 Heidland U E, Heintzen M P, Schwartzkopff B, Strauer B E. Preconditioning during percutaneous transluminal coronary angioplasty by endogenous and exogenous adenosine.  Am Heart J. 2000;  140 813-820
  • 21 Tsuchida A, Liu A, Liu G S, Cohen M V, Downey J M. Alpha-1-adrenergic agonists precondition rabbit myocardium independent of adenosine by direct activation of protein kinase C.  Circ Res. 1994;  75 576-585
  • 22 Yao Z, Tong J, Tan X, Li C, Shao Z, Kim W C, Vanden Hoek T L, Becker L B, Head C A, Schumacker P T. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes.  Am J Physiol. 1999;  277 H2504-H2509
  • 23 McPherson B C, Yao Z. Signal transduction of opioid-induced cardioprotection in ischemia-reperfusion.  Anesthesiology. 2001;  94 1082-1088
  • 24 Schultz J E, Hsu A K, Gross G J. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart.  Circ Res. 1996;  78 1100-1104
  • 25 Hartman J C, Wall T M, Hullinger T G, Shebuski R J. Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140.  J Cardiovasc Pharmacol. 1993;  21 996-1003
  • 26 Kirsch G E, Codina J, Birnbaumer L, Brown A M. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes.  Am J Physiol. 1990;  259 H820-H826
  • 27 Schultz J E, Hsu A K, Barbieri J T, Li P I, Gross G J. Pertussis toxin abolishes the cardioprotective effect of ischemic preconditioning in intact rat heart.  Am J Physiol. 1998;  275 H495-H500
  • 28 Speechly-Dick M E, Grover G J, Yellon D M. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model.  Circ Res. 1995;  77 1030-1035
  • 29 Grover G J, Garlid K D. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology.  J Mol Cell Cardiol. 2000;  32 677-695
  • 30 McPherson B C, Yao Z. Morphine mimics preconditioning via free radical signals and mitochondrial KATP channels in myocytes.  Circulation. 2001;  103 290-295
  • 31 Gopalakrishna R, Anderson W B. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain.  Proc Natl Acad Sci. 1989;  86 6758-6762
  • 32 Yang X M, Sato H, Downey J M, Cohen M V. Protection of ischemic preconditioning is dependent upon a critical timing sequence of protein kinase C activation.  J Mol Cell Cardiol. 1997;  29 991-999
  • 33 Baines C P, Wang L, Cohen M V, Downey H F. Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's anti infarct effect in the rabbit heart.  J Mol Cell Cardiol. 1998;  30 383-392
  • 34 Fryer R M, Schultz J J, Hsu A K, Gross G J. Pretreatment with tyrosine kinase inhibitors partially attenuates ischemic preconditioning in rat hearts.  Am J Physiol. 1998;  275 H2009-H2015
  • 35 Weinbrenner C, Liu G S, Cohen M V, Downey J M. Phosphorylation of Tyrosine 182 of p38 mitogen activated protein kinase correlates with the protection of preconditioning in the rabbit heart.  J Mol Cell Cardiol. 1997;  29 2383-2391
  • 36 Hattori R, Otani H, Uchiyama T, Imamura H, Cui J, Maulik N, Cordis G A, Zhu L, Das D K. Src tyrosine kinase is the trigger but not the mediator of ischemic preconditioning.  Am J Physiol Heart Circ Physiol. 2001;  281 H1066-H1074
  • 37 Maulik N, Yoshida T, Zu Y L, Sato M, Banerjee A, Das D K. Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPKAP kinase 2.  Am J Physiol. 1998;  275 H1857-H1864
  • 38 Bolli R. The late phase of preconditioning.  Circ Res. 2000;  87 972-983
  • 39 Müllenheim J, Schlack W, Fräßdorf J, Preckel B, Thämer V. Additive protective effects of late and early ischaemic preconditioning are mediated by opening of KATP channels in vivo.  Pflügers Arch Eur J Physiol. 2001;  442 178-187
  • 40 Deutsch E, Berger M, Kussmaul W G, Hirshfeld J WJ, Herrmann H C, Laskey W K. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features.  Circulation. 1990;  82 2044-2051
  • 41 Okazaki Y, Kodama K, Sato H, Kitakaze M, Hirayama A, Mishima M, Hori M, Inoue M. Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon.  J Am Coll Cardiol. 1993;  21 1597-1604
  • 42 Kloner R A, Shook T, Przyklenk K, Davis V G, Junio L, Matthews R V, Burstein S, Gibson M, Poole W K, Cannon C P. et al . Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning?.  Circulation. 1995;  91 37-45
  • 43 Kloner R A, Shook T, Antman E M, Cannon C P, Przyklenk K, Yoo K, McCabe C H, Braunwald E. Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B.  Circulation. 1998;  97 1042-1045
  • 44 Kersten J R, Schmeling T J, Orth K G, Pagel P S, Warltier D C. Acute hyperglycemia abolishes ischemic preconditioning in vivo.  Am J Physiol. 1998;  275 H721-H725
  • 45 Kersten J R, Toller W G, Gross E R, Pagel P S, Warltier D C. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality.  Am J Physiol Heart Circ Physiol. 2000;  278 H1218-H1224
  • 46 Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai M Z. Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits.  Exp Clin Endocrinol Diabetes. 2002;  110 212-218
  • 47 Smith J M, Wahler G M. ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic rats.  Mol Cell Biochem. 1996;  158 43-51
  • 48 Kersten J R, Montgomery M W, Ghassemi T, Gross E R, Toller W G, Pagel P S, Warltier D C. Diabetes and hyperglycemia impair activation of mitochondrial KATP channels.  Am J Physiol. 2001;  280 H1744-H1750
  • 49 Tanaka K, Kehl F, Gu W, Krolikowski J G, Pagel P S, Warltier D C, Kersten J R. Isoflurane-induced preconditioning is attenuated by diabetes.  Am J Physiol Heart Circ Physiol. 2002;  282 H2018-H2023
  • 50 Tosaki A, Engelman D T, Engelman R M, Das D K. The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts.  Cardiovasc Res. 1996;  31 526-536
  • 51 Lu R, Hu C P, Peng J, Deng H W, Li Y J. Role of calcitonin gene-related peptide in ischaemic preconditioning in diabetic rat hearts.  Clin Exp Pharmacol Physiol. 2001;  28 392-396
  • 52 Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhöffer A, Styk J. Acute diabetes modulates response to ischemia in isolated rat heart.  Mol Cell Biochem. 2000;  210 143-151
  • 53 Tatsumi T, Matoba S, Kobara M, Keira N, Kawahara A, Tsuruyama K, Tanaka T, Katamura M, Nakagawa C, Ohta B, Yamahara Y, Asayama J, Nakagawa M. Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic rat hearts.  J Am Coll Cardiol. 1998;  31 707-715
  • 54 Ebel D, Müllenheim J, Fräßdorf J, Heinen A, Huhn R, Bohlen T, Ferrari J, Südkamp H, Preckel B, Schlack W, Thämer V. Effect of acute hyperglycemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischemic late preconditioning in the rabbit heart in vivo.  Pflügers Arch Eur J Physiol. 2003;  446 175-182
  • 55 Valle H F del, Lascano E C, Negroni J A. Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels.  Cardiovasc Res. 2002;  55 642-659
  • 56 Ghosh S, Standen N B, Galinanes M. Failure to precondition pathological human myocardium.  J Am Coll Cardiol. 2001;  37 711-718
  • 57 Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction.  J Am Coll Cardiol. 2001;  38 1007-1011
  • 58 Bouchard J F, Lamontagne D. Protection afforded by preconditioning to the diabetic heart against ischaemic injury.  Cardiovasc Res. 1998;  37 82-90
  • 59 Ravingerova T, Stetka R, Pancza D, Ulicna O, Ziegelhöffer A, Styk J. Susceptibility of ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart.  Physiol Res. 2000;  49 607-616

Dr. med. Dirk Ebel

Klinik für Anästhesiologie · Universitätsklinikum Düsseldorf

Moorenstraße 5

Postfach 101007

40001 Düsseldorf

Phone: + 49/211/81-18101

Fax: + 49/211/81-16253

Email: ebeld@uni-duesseldorf.de

    >