Horm Metab Res 2005; 37(1): 26-31
DOI: 10.1055/s-2005-861028
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Cholesterol Feeding Prevents Adiposity in the Obese Female Aromatase Knockout (ArKO) Mouse

M.  L.  Misso1, 2 , K.  N.  Hewitt1, 2 , W.  C.  Boon1 , Y.  Murata1 , M.  E.  E.  Jones1 , E.  R.  Simpson1
  • 1Prince Henry’s Institute of Medical Research, P.O. Box 5152, Clayton, Victoria, Australia
  • 2Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria, Australia
Further Information

Publication History

Received 24 February 2004

Accepted after Revision 21 July 2004

Publication Date:
28 January 2005 (online)

Abstract

The aromatase (ArKO) knockout mouse develops obesity marked by increased gonadal fat depots. This obesity is characterized by pronounced hypertrophy and hyperplasia in adipocytes with corresponding increases in transcripts involved in fat development. Aromatase deficiency in mice and humans with natural mutations of the aromatase gene also leads to metabolic syndrome, particularly hepatic steatosis. In ArKO mice, this hepatic steatosis, the increased body weight and serum triglycerides are surprisingly prevented by cholesterol feeding. We sought to investigate whether the reduction in body weight upon cholesterol feeding is reflected in gonadal fat depots, which account for a large percentage of body weight in the ArKO mouse. Indeed, gonadal fat depots in female ArKO mice were significantly reduced after cholesterol feeding. Concomitantly, adipocyte hyperplasia and hypertrophy were dramatically reduced upon cholesterol feeding in ArKO mice. Real-time PCR analysis revealed concurrent changes with adipocyte volume in the levels of lipoprotein lipase, caveolin-1 and CD59 transcripts. Little change was observed in levels of transcripts involved in de novo fatty acid synthesis, β-oxidation, lipolysis, differentiation and cholesterol metabolism, suggesting that cholesterol feeding prevents hyperplasia and hypertrophy of ArKO adipocytes, possibly as a consequence of changes in transcript levels of lipoprotein lipase and therefore fatty acid uptake.

References

  • 1 Johnson P R, Stern J S, Greenwood M R, Hirsch J. Adipose tissue hyperplasia and hyperinsulinemia on Zucker obese female rats: a developmental study.  Metabolism. 1978;  27 1941-1954
  • 2 Heo Y R, Claycombe K, Jones B H, Wright P, Truett G E, Zemel M, Banz W, Maher M, Moustaid-Moussa N. Effects of fatty (fa) allele and high-fat diet on adipose tissue leptin and lipid metabolism.  Horm Metab Res. 2002;  34 686-690
  • 3 Faust I M, Miller W H , Sclafani A, Aravich P F, Triscari J, Sullivan A C. Diet-dependent hyperplastic growth of adipose tissue in hypothalamic obese rats.  Am J Physiol. 1984;  247 R1038-R1046
  • 4 Robey W W, Cherry J A, Siegel P B, van Krey H P. Hyperplastic response of adipose tissue to caloric overconsumption in sexually mature chickens.  Poult Sci. 1988;  67 800-808
  • 5 Berger J J, Barnard R J. Effect of diet on fat cell size and hormone-sensitive lipase activity.  J Appl Physiol. 1999;  87 227-232
  • 6 Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.  Mol Cell. 1999;  4 597-609
  • 7 Li J, Yu X, Pan W, Unger R H. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity.  Am J Physiol Endocrinol Metab. 2002;  282 E1334-E1341
  • 8 Horton J D, Shimomura I, Ikemoto S, Bashmakov Y, Hammer R E. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver.  J Biol Chem. 2003;  278 36 652-36 660
  • 9 Misso M L, Murata Y, Boon W C, Jones M E, Britt K L, Simpson E R. Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse.  Endocrinology. 2003;  144 1474-1480
  • 10 Jones M E, Thorburn A W, Britt K L, Hewitt K N, Wreford N G, Proietto J, Oz O K, Leury B J, Robertson K M, Yao S, Simpson E R. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity.  Proc Natl Acad Sci U S A. 2000;  97 12 735-12 740
  • 11 Hewitt K N, Boon W C, Murata Y, Jones M E, Simpson E R. Estrogen deficiency leads to a sexually dimorphic phenotype of hepatic steatosis in male male.  Endocrinology. 2005;  in review
  • 12 Hewitt K N, Boon W C, Murata Y, Jones M E, Simpson E R. The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis.  Endocrinology. 2003;  144 3895-3903
  • 13 Le Lay S, Krief S, Farnier C, Lefrere I, Le L, X , Bazin R, Ferre P, Dugail I. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes.  J Biol Chem. 2001;  276 16 904-16 910
  • 14 Fisher C R, Graves K H, Parlow A F, Simpson E R. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene.  Proc Natl Acad Sci U S A. 1998;  95 6965-6970
  • 15 Robertson K M, O’Donnell L, Jones M E, Meachem S J, Boon W C, Fisher C R, Graves K H, McLachlan R I, Simpson E R. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene.  Proc Natl Acad Sci U S A. 1999;  96 7986-7991
  • 16 Peet D J, Turley S D, Ma W, Janowski B A, Lobaccaro J M, Hammer R E, Mangelsdorf D J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha.  Cell. 1998;  93 693-704
  • 17 Brown M S, Goldstein J L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.  Cell. 1997;  89 331-340
  • 18 Horton J D, Shimomura I, Brown M S, Hammer R E, Goldstein J L, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2.  J Clin Invest. 1998;  101 2331-2339
  • 19 Horton J D, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice.  Proc Natl Acad Sci U S A. 1998;  95 5987-5992
  • 20 Ridgway N D, Lagace T A. Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms.  Biochem J. 2003;  372 811-819
  • 21 Xu J, Nakamura M T, Cho H P, Clarke S D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats.  J Biol Chem. 1999;  274 23 577-23 583
  • 22 Smart E J, Ying Y, Donzell W C, Anderson R G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane.  J Biol Chem. 1996;  271 29 427-29 435
  • 23 Bickel P E. Lipid rafts and insulin signaling.  Am J Physiol Endocrinol Metab. 2002;  282 E1-E10
  • 24 Butikofer P, Malherbe T, Boschung M, Roditi I. GPI-anchored proteins: now you see ‘em, now you don’t.  FASEB J. 2001;  15 545-548
  • 25 Zechner R, Strauss J, Frank S, Wagner E, Hofmann W, Kratky D, Hiden M, Levak-Frank S. The role of lipoprotein lipase in adipose tissue development and metabolism.  Int J Obes Relat Metab Disord 24 Suppl. 2000;  4 S53-S56
  • 26 Lewis D S. Effects of dietary cholesterol on adipose tissue lipoprotein lipase in the baboon.  Biochim Biophys Acta. 1986;  879 44-50
  • 27 Mandour T, Kissebah A H, Wynn V. Mechanism of oestrogen and progesterone effects on lipid and carbohydrate metabolism: alteration in the insulin: glucagon molar ratio and hepatic enzyme activity.  Eur J Clin Invest. 1977;  7 181-187
  • 28 Philipp B W, Shapiro D J. Estrogen regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and acetyl-CoA carboxylase in xenopus laevis.  J Biol Chem. 1981;  256 2922-2927
  • 29 Kovanen P T, Nikkila E A, Miettinen T A. Regulation of cholesterol synthesis and storage in fat cells.  J Lipid Res. 1975;  16 211-223
  • 30 Simons K, Ikonen E. How cells handle cholesterol.  Science. 2000;  290 1721-1726
  • 31 Brown M S, Goldstein J L. A receptor-mediated pathway for cholesterol homeostasis.  Science. 1986;  232 34-47
  • 32 Acton S, Rigotti A, Landschulz K T, Xu S, Hobbs H H, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.  Science. 1996;  271 518-520
  • 33 Krause B R, Hartman A D. Adipose tissue and cholesterol metabolism.  J Lipid Res. 1984;  25 97-110
  • 34 Brown M S, Dana S E, Goldstein J L. Receptor-dependent hydrolysis of cholesteryl esters contained in plasma low density lipoprotein.  Proc Natl Acad Sci U S A. 1975;  72 2925-2929

Marie Misso

Prince Henry’s Institute of Medical Research

P.O. Box 5152 · Clayton 3168 · Victoria · Australia

Phone: +61 (3) 95943249

Fax: +61 (3) 95946125

Email: marie.misso@med.monash.edu.au

    >