Horm Metab Res 2005; 37(3): 164-171
DOI: 10.1055/s-2005-861302
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Troglitazone Reduces Leptinemia during Experimental Dexamethasone-induced Stress

F.  Caldefie-Chézet1 , A.  Poulin1 , A.  Enreille-Leger2 , M-P.  Vasson2, 3
  • 1Laboratoire de Biochimie, Biologie Moléculaire et Nutrition, EA2416, Faculté de Pharmacie
  • 2Laboratoire de Biochimie
  • 3Unité de Nutrition, Centre Anti-cancéreux Jean-Perrin, Clermont-Ferrand, France
Further Information

Publication History

Received 24 May 2004

Accepted after revision 16 August 2004

Publication Date:
12 April 2005 (online)

Abstract

Background and aims: Recently, we found that profound anorexia observed in a catabolic model induced by chronic glucocorticoid (dexamethasone, Dex) injection could be associated with strong hyperleptinemia. To investigate the implication of leptin in this catabolic stress response, we used a model whereby leptin secretion was inhibited using troglitazone (Trg) concomitantly with a Dex-induced-stress injection.

Methods: Adult rats (3 months, n = 12) were stressed with a Dex injection (1.5 mg/kg/day ip, 5 days) and either treated (DXTG+, n = 6) or not (DXTG-, n = 6) with Trg (60 mg/kg/day sc, 5 days). These DXTG+ and DXTG- groups were compared with an untreated ad libitum group and a pair-fed group receiving saline ip instead of the Dex injection. The effects of troglitazone treatment on leptin gene expression in adipose tissue, blood glucose, insulin, and on hepatic parameters under stress conditions were determined.

Results: Trg treatment specifically diminished leptinemia (30 %, DXTG+ vs DXTG-, p < 0.05). Insulinemia and glycemia remained unchanged, as did leptin gene expression; food intake improved, but hepatic capacities did not show any alteration.

Conclusion: Trg is a useful agent in exploring certain potential effects of leptin on metabolic and immune disorders occurring during aggression.

References

  • 1 Matthews D E, Battezzati A. Substrate kinetics and catabolic hormones. In: Kinney JM and Tucker HN (eds) Organ metabolism and nutrition: ideas for future critical care. New York; Raven PR 1994: 1-21
  • 2 Stein P T, Yoshida S, Yamasaki K, Kakegawa T. Amino acid requirements of critically ill patients. In: Latifi R (ed) Amino acids in critical care and cancer. Boca Raton; R.G. Landes Company 1994: 9-25
  • 3 Redmond H P, Watso W G, Houghton T, Condron C, Watson R GK, Bouchier-Hayes D. Immune function in patients undergoing open vs laroscopic cholecystectomy.  Arch Surg. 1994;  129 1240-1246
  • 4 Dhabhar F S, Miller A H, Mc E wen, Spencer R L. Stress-induced change in blood leukocyte distribution.  J Immunol. 1996;  157 1638-1644
  • 5 Berczi I. Neurohormonal host defense in endotoxin shock.  Ann N Y Acad Sci. 1998;  840 787-802
  • 6 Shijo H, Iwabuchi K, Hosoda S, Watanabe H, Nagaoka I, Sakakibara N. Evaluation of neutrophil functions after experimental abdominal surgical trauma.  Inflamm Res. 1998;  47 67-74
  • 7 Pignatelli D, Magalhaes M M, Magalhaes M C. Direct effects of stress on adrenocortical function.  Horm Metab Res. 1998;  30 464-474
  • 8 Caldefie-Chézet F, Moinard C, Minet-Quinard R, Gachon F, Cynober L, Vasson M P. Dexamethasone treatment induces long-lasting hyperleptinemia and anorexia in old rats.  Metabolism. 2001;  50 1054-1058
  • 9 Stephens T W, Basinski M, Bristow P K, Bue-Walleskey J M, Burgett S G, Craft L, Hale J, Hoffmann J, Hsiung H M, Kriauciunas A, MacKellar W, Rosteck P R, Shoner B, Smith D, Tinsley F C, Zhang X Y, Heiman M. The role of neuropeptide Y in the antiobesity action of the obese gene product.  Nature. 1995;  377 530-532
  • 10 Auwerx J, Staels B. Leptin.  Lancet. 1998;  351 737-742
  • 11 Heiman M L, Chen Y, Caro J F. Leptin participates in the regulation of glucocorticoid and growth hormon axes.  J Nutr Biochem. 1998;  9 553-559
  • 12 Vettor R, De Pergola G, Pagano C, Englaro P, Laudadio E, Giorgino F, Blum W F, Giorgino R, Federspil G. Relationships between serum leptin and testosterone in obese men. In: Blum WF, Kiess W, and Rascher W (eds) Leptin: the voice of the adipose tissue. Leipzig; Verlag B 1997: 237-245
  • 13 Prolo P, Wong M L, Licinio J. Leptin.  Int J Biochem Cell Biol. 1998;  30 1285-1290
  • 14 Shimabukuro M, Koyama K, Chen G, Wang M Y, Trieu F, Lee Y, Newgard C B, Unger R H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues.  Proc Natl Acad Sci USA. 1997;  94 4637-4641
  • 15 Muoio D M, Dohn G L, Fiedorek F T, Tapscott E B, Coleman R A. Leptin directly alters lipid partitioning in skeletal muscle.  Diabetes. 1997;  46 1360-1363
  • 16 Cioffi J A, Shafer A W, Zupancic T J, Smith-Gbur J, Mikhail A, Platika D, Snodgrass H. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction.  Nat Med. 1996;  2 585-589
  • 17 Caldefie-Chézet F, Poulin A, Tridon A, Sion B, Vasson M P. Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action?.  J Leucok Biol. 2001;  69 414-418
  • 18 Brichard S M, Delporte M L, Lambert M. Adipocytokines in anorexia nervosa: a review focusing on leptin and adiponectin.  Horm Metab Res. 2003;  35 337-342
  • 19 Brunner L, Nick H P, Cumin F, Chiesi M, Baum H P, Whitebread S, Stricker-Krongrad A S, Levens N. Leptin is a physiological important regulator of food intake.  Int J Obes. 1997;  21 1152-1160
  • 20 Martinez-Anso E, Perez M, Martinez J A. Induction of hypothermia, hypoglycemia and hyperinsulinemia after acute leptin immunoneutralization in overnight fasted mice.  Int J Mol Med. 1998;  2 681-683
  • 21 Kallen C B, Lazar M A. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes.  Proc Natl Acad Sci USA. 1996;  93 5793-5796
  • 22 Zhang B, Graziano M P, Doebber T W, Leibowitz M D, White-Carrington S, Szalkowski D M, Hey P J, Wu M, Cullinan C A, Bailey P, Lollmann B, Frederich R, Flier J S, Strader C D, Smith R G. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in zucker diabetic fatty rats and db/db mice.  J Biol Chem. 1996;  271 9455-9459
  • 23 Shimizu H, Tsuchiya T, Sato N, Shimomura Y, Kobayashi I, Mori M. Troglitazone reduces plasma leptin concentration but increases hunger in NIDM patients.  Diabetes care. 1998;  21 1470-1474
  • 24 Chen C. Troglitazone: an antidiabetic agent.  Am J Health-Syst Pharm. 1998;  55 905-925
  • 25 Minet-Quinard R, Moinard C, Walrand S, Villie F, Normand B, Vasson M P, Chopineau J, Cynober L. Induction of a catabolic state in rats by dexamethasone: dose or time dependancy?.  J Parent Ent Nutr. 1997;  24 30-36
  • 26 Moinard C, Caldefie F, Walrand S, Felgines C, Vasson M, Cynober L. Involvement of glutamine, arginine, and polyamines in the action of ornithine α-ketoglutarate on macrophage functions in stressed rats.  J Leucok Biol. 2000;  67 834-840
  • 27 Fujiwara Y, Ohsawa T, Takahashi S, Ikeda K, Okuno A, Ushiyama S, Matsuda K, Horikoshi H. Troglitazone, a new antidiabetic agent possessing radical scavenging ability, improved decreased skin blood flow in diabetic rats.  Life Sci. 1998;  63 2039-2047
  • 28 De Vos P, Saladin R, Auwerx J, Staels B. Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake.  J Biol Chem. 1995;  270 15 958-15 961
  • 29 Caldefie-Chézet F, Poulin A, Vasson M P. Hyperleptinemia induced by dexamethasone treatment is not the result of leptin mRNA overexpression in old rats.  Horm Metab Res. 2003;  35 265-267
  • 30 Miles P DG, Romeo O M, Higo K, Cohen A, Rafaat K, Olefsky J. TNF-alpha-induced resistance in vivo and its prevention by troglitazone.  Diabetes. 1998;  46 1678-1683
  • 31 Okumura S, Takeda K, Yoshino K, Nakashima K, Sugimoto M, Ishimori M, Takami R, Yasuda K. Effects of troglitazone on dexamethasone-induced insulin resistance in rats.  Metabolism. 1998;  47 351-354
  • 32 Johnson M DJB, Campbell L K, Campell R K. Troglitazone:review and assessment of its role in the treatment of patients with impaired glucose tolerance and diabetes mellitus.  Ann Pharmacother. 1998;  32 337-348
  • 33 Garibotto G, Russo R, Franceschini R, Robaudo C, Saffioti S, Sofia A, Rolandi E, Deferrari G, Barreca T. Inter-organ leptin exchange in humans.  Biochem Biophys Res Commun. 1998;  247 504-509
  • 34 Landt M. Leptin binding and binding capacity in serum.  Clin.Chem.. 2000;  46 379-384
  • 35 Munck A, Guyre P M. Glucocorticoids physiology and homeostasis in relation to anti-inflammatory actions. In: Schleimer RP, Claman HN, Oransky A (eds) Anti-inflammatory steroid action: basic and clinical aspects. San Diego 1989: 31-47
  • 36 Berti L, Kellerer M, Capp E, Häring H U. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a PI3-kinase mediated effect.  Diabetologia. 1997;  40 606-609
  • 37 Kamohara S, Burcelin R, Halaas J L, Friedman J M, Charron M J. Acute stimulation of glucose metabolism in mice by leptin treatment.  Nature. 1997;  389 374-377
  • 38 Jansson P A, Enerbäck S, Eriksson J W, Elam M, Smith U. Insulin resistance and increased plasma leptin levels in healthy, nonobese, first-degree relatives of subjects with noninsulin-dependent diabetes mellitus. No relation to sympathetic nerve activity. In: Blum WF, Kiess W, and Rascher W (eds) Leptin: the voice of adipose tissue. Leipzig; Verlag B 1997: 269-274
  • 39 Muller G, Ertl J, Gerl M, Preibisch G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes.  J Biol Chem. 1997;  272 10 585-10 593
  • 40 Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin.  Science. 1996;  274 1185-1188
  • 41 Preibisch G, Ertl J, Herling A W, Müller G. Incubation of isolated rat adipocytes with leptin leads to desensitization toward insulin. In: Blum WF, Kiess W, and Rascher W (eds) Leptin: the voice of adipose tissue. Leipzig; Verlag B 1997: 149-156
  • 42 Wauters M, Considine R V, Yudkin J S, Peiffer F, De Leeuw I, Van Gaal L F. Leptin levels in type 2 diabetes: associations with measures of insulin resistance and insulin secretion.  Horm Metab Res. 2003;  35 92-96
  • 43 Yoshioka S, Nishino H, Shikari T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H. Antihypertensive effects of CS-045 treatment in obese zucker rats.  Metabolism. 1993;  42 75-80
  • 44 Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and zucker fatty rats.  Diabetes. 1988;  37 1549-1558
  • 45 Beales P E, Liddi R, Giogini A E, Signore A, Procaccini E, Batchelor K, Pozzili P. Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse.  Eur J Pharmacol. 1998;  357 221-225
  • 46 Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T. Troglitazone increases tne number of small adipocytes without the change of the white adipose tissue mass in obese Zucker rats.  J Clin Invest. 1998;  101 1354-1361
  • 47 Kosegawa I, Chen S, Awata T, Negishi K, Katayama S. Troglitazone and metformin, but not glibenclamide, decrease blood pressure in otsuka long evans tokushima fatty rats.  Clin Exp Hypertension. 1999;  21 199-211

F. Caldefie-Chézet

Laboratoire de Biochimie · Biologie Moléculaire et Nutrition · Faculté de Pharmacie ·

28 place Henri-Dunant · B.P. 38 · 63001 Clermont-Ferrand Cedex 1 · France

Phone: +33 (4) 73 60 80 32 ·

Fax: +33 (4) 73 27 49 42

Email: Florence.Caldefie-Chezet@u-clermont1.fr

    >